一种小功率通用变频器的设计

最新更新时间:2006-12-01来源: 电源技术应用关键字:SPWM  SA866  PS21255 手机看文章 扫描二维码
随时随地手机看文章

0 引言
  
  由于电力电子技术的飞速发展,交流变频调速已上升为电气传动的主流,正在逐步取代传统的直流传动。而从性价比的角度来看,交流变频调速装置已经优于直流调速装置。
  
  异步电机的变频调速不仅可以实现平滑调节,还有着许多其他交流调速系统不可比拟的优点:交流变频调速在频率范围、动态响应、调速精度、低频转矩、转差补偿、通信功能、智能控制、功率因数、工作效率、使用方便等方面的优势是其他的交流调速方式难以达到的,并以体积小、重量轻、通用性强、保护功能完善、可靠性高、操作简便等优点,深受钢铁、冶金、矿山、石油、化工、医药、纺织、机械、电力、轻工、造纸、印刷、卷烟、自来水等行业的欢迎,社会效益非常显著。
  
  变频调速虽然在各个方面有其优势,但其早期昂贵的造价和可靠性问题使许多用户望而却步。降低造价和提高可靠性一直是交流变频调速的重要课题。
  
  本文针对一般小功率交流异步电动机变频调速的要求,采用上世纪90年代末才推出的多功能高集成度专用SPWM控制芯片SA866和智能功率模块PS21255开发了一种新型通用变频器。其整机结构简洁,具有比较完善的功能,满足了空调、洗衣机等家电及小型纺织、塑料加工等工业的自动化生产线对变频器低成本、高可靠性、高性能的要求,并已经在广东、江苏等多家工厂生产中得到应用。

1 SA866和PS21255功能介绍
1.1 SA866功能简介

1.1.1 功能特点
  
  SA866是专用于交流异步电机SPWM控制的集成电路。它除了根据设定参数产生合乎要求的SPWM脉冲外,还集成了多种保护功能,并可在紧急情况下,如短路和过载时快速关断SPWM脉冲,保护逆变器和电机。它的最大特点是可以独立运行,无须微处理器控制。它的输出频率以及加速减速频率都可由外接电位器在线连续调节。所有须定义的参数如载波频率、死区时间、最小脉宽、调制波形、V/f曲线等均存储在外接的廉价EEPROM中,上电时自动读入SA866中。SA866有6种工作模式,与微处理器配合使用,基本做到了低价格多功能。

1.1.2 管脚说明
  
  该芯片采用PLCC封装,共有32个管脚,各管脚排列如图1所示。

  各管脚功能如下。
  1)电源 VDDD和VDDA分别为数字电源和模拟电源;VSSADC为A/D转换电源,它们接一个+5 V的电源;VSSD和VSSA分别为数字电源和模拟电源的地;VREFIN为A/D转换参考电压(+2.5 V)。
  2)串行接口 SDA,SCL和CS用于从EEPROM获取数据,分别为数据,时钟和片选信号。
  3)控制及输出 SETPOINT为频率给定端,该脚的输入电压将决定系统的工作频率;RACC
RDEC分别确定加速和减速的时间;RPHT,YPHT,BPHT,RPHB,YPHB和BPHB为桥臂脉冲信号输出,其中RPHT,YPHT和BPHT分别对应三相输出的上桥臂;RPHB,YPHB和BPHB分别对应三相输出的下桥臂;DIR控制三相顺序,该脚对应高低电平有两个方向的PWM波供用户选择。
  4)工作状态选择 
决定与SA866连接的是EEPROM还是微处理器,高电平表示与
EEPROM连接;PAGE0和PAGE1决定采用的是EEPROM的哪一页参数。
  5)保护 VMON为过电压信号输入端,减速过程中此端电平若大于2.5 V,就启动过电压保护动作,将输出频率固定在当前值;IMON为过电流信号输入端,升速过程中,电平若大于2.5 V,内部过流保护就动作,不再继续升速,直到过流信号消失;SET TRIP为紧急停机信号,可快速禁止PWM脉冲输出;端表示禁止输出状态,低电平有效,该信号只有在复位信号下才能被解除。

1.2 PS21255功能简介
1.2.1 功能特点
  
  与常规的IGBT模块相比,PS21255具有如下特点:
  1)内含驱动电路 IPM设定了内部IGBT的最佳驱动条件,驱动电路离IGBT较近,可以大大减少信号传输阻抗,且受外界干扰小,因此不需加反向偏压,同时,本模块采用自举电路,从而摆脱了控制电源不共地的限制,使用一个电源,即可实现方便的控制;
  2)内含各种保护 使内部IGBT因故障损坏的几率大大降低,这些保护包括短路保护(SC),控制电路欠压保护(UV)等;
  3)内部报警输出(FO) 该信号送到控制PWM产生器,封锁脉冲输出,进而停止系统工作;
  4)散热效果好 采用陶瓷绝缘结构,扁平封装,可以直接安装在散热器上;
  5)端子布局合理,便于安装 强弱电的输出输入端分别安排在模块的两侧,做到尽量减少干扰。
1.2.2 管脚说明
  该模块的外形及端子分布如图2所示。

  IPM(PS21255)模块外部端子在布局上强弱电分开,P 及N为直流输入端,P为正端,N为负端;U,V,W为逆变器三相输出端;UP,VP,WP为上桥臂U,V,W各相脉冲信号输入端;UN,VN,WN为下桥臂U,V,W各相脉冲信号输入端;VP1及VPC为上桥臂工作电源输入端,VP1为正端,VPC为负端;VN1及VNC为下桥臂工作电源输入端,VN1为正端,VNC为负端;CIN为电流检测信号输入端;FO为故障输出端(低电平有效);CFO为故障输出脉宽控制端;VUFB及VUFS为U相自举电路两端,VUFB为高端,VUFS为低端;VVFB及VVFS为V相自举电路两端,VVFB为高端,VVFS为低端;VWFB及VWFS为W相自举电路两端,VWFB为高端,VWFS为低端。

2 系统设计
2.1 硬件电路

  
  我们开发的小功率通用变频器,采用单相交流供电,经整流滤波后送入逆变桥,再由逆变桥将该直流电逆变成三相VVVF(variable voltage variable frequency)电源,以驱动电机。整个系统分为主电路和控制电路两部分。系统构成框图如图3所示。

  主电路采用二极管整流,大容量的电解电容滤波,IPM模块为主电路的核心部分,它包含6个IGBT构成三相逆变桥,且各有自己的驱动电路和保护电路,整个模块还有短路及控制电路欠压保护功能。它的输入可以兼容TTL电平输入。
  
  控制电路主要有控制电源和以SA866为核心的SPWM波发生及驱动电路。控制电源采用7805和7815提供直流稳压电源。SA866AE通过10位数模转换器和外接正反向方向脚,可实现转速的连续调节和正反向切换。所有的运行参数,包括载波频率、波形、最小脉冲宽度、死区脉宽和V/f曲线等都是通过外接的EEPROM编程。由于输入电压和反馈能量都将直接反映在直流环节上,所以,整个系统的电压电流检测及保护取样均集中在直流环节。驱动逆变桥所须的PWM信号则由ASIC芯片SA866提供,经反向后送给IPM模块。
  
  EEPROM选用93LC46,它只须+5 V的电压即可工作。可重复地擦写106次。该芯片的封装形式为DIP-8,其中VCC和VSS分别为5 V电源输入的正负端,CLK为时钟信号输入端,DI为数据输入端,DO为数据输出端,ORG为内部数据的存储结构,进行8位或16位的选择。将需要设定的参数写入EEPROM,系统在上电时就自动从EEPROM里面将参数字读入SA866,依据所设定的参数字,系统产生相应的脉冲波形用来控制主电路中模块的开或关。

2.2 参数计算与设定
  
  1)载波频率(CFS) 载波频率是外接时钟频率和一个倍率系数N的函数,N的十进制值由初始化寄存器中的一个3位的CFS字决定。载波频率fCARR由式(1)决定。
  
式中:fCLK为时钟输入频率,本系统所选用的晶振为20 MHz。取n=1,CFS=001,实际fCARR==
  2)输出电源频率范围(FRS) 频率范围给出了输出频率的上限值。频率范围fRANCE=fCARR×2m/384,取m=1,即FRS=(001)B。
  3)死区时间(tpdy) tpdy=(63-PDY)/(fCARR×512);PDY在0~63之间,取PDY=37=(100101)B;则实际的tpdy=(26/26.2144)5 μs=4.959 μs。
  4)脉冲取消时间(PDT) 经调制后SPWM的脉宽可以很小,但实际上,过小的脉宽没有用,因为时间过短,功率管还没来得及完全打开就关闭了,只增加了功率管的损耗,降低了系统的效率。脉冲取消时间tpd=(127-PDT)/(fCARR×512);依此公式,若定义最小宽度为3 μs,实际最小脉宽为tpd-tpdy,则tpd=7.959 μs,可得PDT=85.272,取PDT=85=(1010101)B,因此,实际tpd=8.01 μs,脉冲最小宽度为tpd-tpdy=8.01 μs-4.959 μs=3.051 μs。
  5)波形选择 SA866AE 有三种标准波形供选择,即纯正弦波,正弦波带三次谐波(增强型)和带死区的三次谐波(高效型)。波形采用对称技术保证每个功率管的开通角度相同。本系统选用带三次谐波的正弦波作为调制波,即有:WS=(01)B。
  6)V/f曲线控制 FC用来确定是线性定律还是风扇定律,本系统设定工作在线性曲线状态,即FC=0。图4为SA866AE/AM所提供的线性特性。PED 是一个8位参数,用来确定在频率为0时电机上的电压。如果设置PED=255,则VVVF线性特性没用。Pedestal(%)=PED×100/255,本系统的初始值设定为10%,可得PED=25.5,取25,实际的Pedestal (%)=9.8。GRAD为一个8位二进制数,决定恒转矩区曲线的斜率,根据基频和PED值计算:GRAD=(255-PED)×fRANGE/(16×fbase);GRAD255,取fbase=50 Hz;则有GRAD=15=(1111)B。

  7)其他参数 由于线性曲线中不用KAY,在此KAY=(0000000)B;A/D转换的零阈值的控制参数ZTH=(00)B;将上述所有参数字经统计得CHKSUM=(001)B。AWS=(0000)B。
  由上述计算可得到参数分布表如表1所列。

4 试验应用结果及结论
  
  根据设计做成的通用变频器,进行了调速、起动、停止、反向、过载调节和加减速时间调节等试验,试验表明,该变频器各项性能良好,符合设计要求,并已先后在广东和江苏等地的空调制冷机、压缩机、纺织生产线和塑料制品生产线上得到应用。该变频器结构简洁、成本低、可靠性高、具有较高的性价比和灵活的适应性,是驱动小功率电机及此类生产线最理想的选择。

参考文献

[1] Bose BK. Power Electronics and Motion Control
Technology Status and Recent Trends[J]. IEEE Trans on IA,1993,5(29): 902-999.
[2] Leonhard W. Power Electronics and Microelectronics,
Tools for Future Electrical Energy Conversion[A]. Proceedings IPEMC[C].1997: 990-996.
[3] 陈伯时.电力拖动自动控制系统(第二版)[M].北京:机械工业出版社,2000.
[4] 王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
[5] 韩安荣.通用变频器及其应用[M].北京:机械工业出版社,2000.
[6] 曾岳南,陈林康,胡杰和.新型全数字化PWM通用变频器[J].电力电子技术,1999,33(6):28-30.
[7] 陈建.使变频器保持最大输出的方法[J].电力电子技术,1996,30(6):48.

关键字:SPWM  SA866  PS21255 编辑: 引用地址:一种小功率通用变频器的设计

上一篇:PWM技术实现方法综述
下一篇:TEA1504开关电源低功耗控制IC

推荐阅读最新更新时间:2023-10-18 14:33

6kV%26#183;A逆变器滞环调制与单极性SPWM倍频调制的比较
摘要:分析了电流型滞环调制和单极性SPWM倍频调制逆变器的原理,然后讨论了两种调制方式下输出滤波器的设计,并在此基础上制作了两台6kV%26;#183;A逆变器样机并给出了输出波形和输出THD。通过理论分析和实验结果可知电流型滞环调制的逆变器稳定性要优于SPWM调制的逆变器,但要获得相近的输出THD值,前者所需要的输出滤波器要远大于后者。 关键词:逆变器;单极性SPWM调制;滞环调制;比较 引言 逆变器主电路是一个开关式大功率放大器,逆变过程的实质是模-数-模的变化过程,它包括模-数和数-模两个变换,分别对应于数字通信技术中的调制编码与解调两个过程 。SPWM调制与滞环调制是目前逆变器中最常见的两种调制方式,它们分别从数字
[应用]
基于DSP+SPWM的变频器设计及实现
常见的AC/DC/AC变频器,是对输出部分进行变频、变压调节,而且在多种逆变控制技术中,应用最广泛的一种逆变控制技术是正弦脉宽调制( SPWM )技术。在变频调速系统中,应用 DSP 作为控制芯片以实现数字化控制,它既提高了系统可靠性,又使系统的控制精度高、实时性强、硬件简单、软件编程容易,是变频调速系统中最有发展前景的研究方向之一。 TMS320LF2407A芯片简介 TMS320LF2407A 是TI公司专为电机控制而设计的单片 DSP 控制器。它具有高性能的C2XLP内核,采用改进的哈佛结构,四级流水线操作,它不仅具备强大高速的运算能力,而且内部集成了丰富的电机控制外围部件,如事件管理器EVA、EVB各包括3个独立
[嵌入式]
基于DSP+<font color='red'>SPWM</font>的变频器设计及实现
基于FPGA的SPWM变频系统设计与实现
由于脉宽调制技术是通过调整输出脉冲的频率及占空比来实现输出电压的变压变频效果,所以在电机调速、逆变器等众多领域得到了日益广泛的应用。 而电磁法作为一种地球物理探测的有效方法,已经广泛地应用于矿藏勘探、地质灾害预测等领域。电磁法仪一般包括发射机和接收机两大部分。现阶段,电磁法仪器的发射机部分一般直接采用等宽PWM技术,其电流谐波畸变率较大,电压利用率不高,效率很低。 本文利用FPGA技术,根据SPWM自然采样法原理,设计了应用于电磁法仪的发射机的SPWM系统。该系统应用到现有的电磁法仪器中,与原来的PWM产生的效果进行比较,得到良好的效果。 1 SPWM技术原理 SPWM信号的原理为:用一组等腰三角形波与一个正弦波比较,其交点作
[电源管理]
基于FPGA的<font color='red'>SPWM</font>变频系统设计与实现
采用DSP TMS320F28335的三相SPWM变频电源的
变频 电源 作为 电源 系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功耗、高效率、 电路 简洁等显著优点而备受青睐。变频电源的整个 电路 由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。   本文实现了基于TMS320F28335的变频电源数字 控制 系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SPWM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、系统扩展能力强等优点。    系统总体介绍   根据结构不同,变频电源可分为直接变频电源与间接变频电
[电源管理]
采用DSP TMS320F28335的三相<font color='red'>SPWM</font>变频电源的
PIC16F877A的光伏并网发电装置设计
引言 新能源是21世纪世界经济发展中最具决定力的五大技术领域之一。太阳能是一种清洁、高效和永不衰竭的可再生能源,是满足未来全球电力需求的法宝。能源短缺、环境污染等问题的日益突出使太阳能电池备受青睐。当前太阳能光伏产业发展迅速,利用现代电能变换技术实行光伏逆变控制,具有很好的潜力。本文将单片机技术与SPWM技术相结合,设计了一种用软件产生SPWM波的方法。结合功率器件具有高速、大电流的特点,研制出光伏并网的逆变电源,通过改变调制深度(即采用不同的脉宽组)实现了良好的稳压控制。系统能够实现频率相位跟踪,具有过流、过压、短路保护(报警并停止输出SPWM波)等功能,自动稳压性能好,输出波形失真小,可为工业上实现光伏并网提供参考。 研究电
[单片机]
PIC16F877A的光伏并网发电装置设计
基于SOPC的SPWM脉冲发生器的实现
  随着电力电子开关器件及技术的不断发展,SPWM(正弦波脉宽调制)技术在逆变控制领域得到广泛应用。传统的SPWM驱动芯片速度慢、不够灵活,存在着电路设计复杂、体积大、抗干扰能力差、设计周期长等缺点,对于许多有特殊要求的场合,由专用芯片很难满足实际的要求,因此,本文采用Ahera公司的EP2C35F672C8N开发一种基于可编程片上系统的SPWM脉冲波形电路,SOPC技术将微处理器和SP-WM波形电路整合到一块FPGA器件当中。可编程的片上系统SOPC(System 0n Programmable Chip)是一种特殊的嵌入式系统,首先它是片上系统(SOC),即由单个芯片完成整个系统的主要逻辑功能;其次,它是可编程系统,具有灵活的
[测试测量]
基于SOPC的<font color='red'>SPWM</font>脉冲发生器的实现
数字化中频SPWM逆变电源控制系统
1 引言   中频逆变电源,是广泛应用于飞机、舰船、雷达、通信、导弹、车辆的标准供电系统,为了进一步提高了中频逆变电源的可靠性和静、动态性能,除在主电路上进行优化设计外,采用数字控制技术也被证明为有效的措施。新一代数字信号处理器TMS320LF240X系列既有高速的运算能力,高可靠性等一般DSP芯片的特点,还在片内集成了如A/D变换器,PWM发生器,脉冲死区发生器等外设电路,使其不仅可广泛应用于电机控制,还可应用于高频开关电源的控制。目前,数字控制已经在功率变换电路中得到了广泛的应用。, 本文将介绍采用TMS320F2407芯片的中频逆变电源数字控制系统,并给出了实验结果。  2 系统构成及控制原理 图1系统构成简化原理图
[电源管理]
基于DSP的SPWM直接面积等效算法的分析
  变频技术作为现代电力电子的核心技术,集现代电子、信息和智能技术于一体。针对工频(我国为50 Hz)并非是所有用电设备的最佳工作频率,因而导致许多设备长期处于低效率、低功率因数运行的现状,变频控制提供了一种成熟、应用面广的高效节能新技术。   而SPWM(正弦波脉宽调制)波的产生和控制则是变频技术的核心之一。开始的SPWM生成技术是采用模拟电路构成三角波和正弦波发生电路,用比较器来确定他们的交点。这种方法电路复杂,精度较差,早已淘汰。后来人们采用单片机和微机生成SPWM波,但受硬件计算速度和算法计算量的影响,往往无法兼顾计算的精度和速度。再后来随着具有强大运算能力的DSP和一些新算法的出现,这一问题得到了较好地解决。
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved