基于ISA总线的高速同步数据采集系统设计

发布者:乐呵的挑最新更新时间:2012-02-29 来源: dzsc关键字:ISA总线  同步数据  采集系统 手机看文章 扫描二维码
随时随地手机看文章

     随着大规模集成的电路的飞速发展,PC机性能不断提高。在PC机扩展槽中嵌入以高性能微处理器为核心的智能型功能卡,可以组成综合性能极佳的分布式控制系统。这种结构方式可充分利用微处理器的控制功能、PC机的快速数据处理能力,以及多任务工作方式等特点。对于这种分布式控制系统,主机要频敏接收到来自扩展卡从机所采集的数据、工作状态等信息;向从机发送控制命令或处理数据等。这种主、从机之间的通讯,根据应用条件的不同有多种方式。但在数据传输速度较高、数据量较大且需经常交换信息的场合,采用双口共享RAM缓冲区方式是最合适的。

     为了用单片机实现对微秒级甚至纳秒级高速瞬变信号进行采样,研究了一种基于ISA总线、GPS同步时钟、用硬件电路实现高速数据采集、高速寻址以及存储的技术,保证了高速瞬态信号的实时采集。对于变化速极快、过程极短的高速瞬态信号的采集,需要高速A/D转换单元、大量数据存储单元、高速寻址和快速存储等。

     由于所采集的信号是高频信号,用常规则方法受到单片机本身运行速度的限制,不仅造成成本提高,而且对高频、远距离多路信号的信号处理增加困难,有时无法区别所采集信号的真伪。通过对8051单片机的外围进行有效的扩展,采取在数据采集时由硬件实现采集和存储,采集完毕后由8051系列单片机进行数据处理和通信,比较好地解决了二者的矛盾。
    
     
     
     笔者研制的高速数据采集板采样频率为20MSPS;A/D转换字长为8位,并且采样速率可变;存储容量为512K字节,符合ISA总线标准。可广泛用于电力测量、继电保护和故障定位等。

     1 硬件系统基本工作原理

     硬件电路框图如图1所示,它是由CPU1及CPU2基本系统、视频闪烁ADC转换器、高速缓存RAM、双口RAM、地址计数器、采样频率控制、时序控制及译码电路等部分组成。

     根据需要CPU采用DS80C320单片机。在时钟频率为33MHz条件下,单周期指令执行时间是110纳秒,充分发挥高速A/D转换芯片的性能。DS80C320内部有三个16位定时器/计数器、二个全双工串行口、十三个中断源(六个外部中断端)、二个数据指针DPTR0和DPTR1。在33MHz晶振时,ALE的输出信号频率是8.25MHz。[page]

     CPU1主要用于数据采集、与PC机通讯;CPU2用于接收GPS时间报文,GPS时间报文可在任何时刻由CPU1从与之相接的双口RAM2中读取。高速双端口RAM IDT7130(2K×8位)、IDT7134(4K×8位),内部具有判决电路以防止因对某一单元同时操作而产生冲突。双口RAM1 IDT7134主要用于CPU1存放采集的数据、同步时间信息及工作状态等,供PC机定时取用,同时也接收来自PC机的命令。双口RAM2 IDT7130其容量为2K字节,主要用于CPU1与CPU2交换GPS的同步时钟信息。

     对高速数据采集技术而言,最为重要的是系统的分辨率、精度与通过速率。特别是系统通过速率,是区别高速数据采集与一般数据采集最为关键的一项技术指标。在硬件的具体实现过程中,则需要考虑两个方面:(1)A/D转换器的转换时间;(2)转换后的数据存储时间[2]。

     1.1 高速A/D转换

     A/D转换采用闪烁ADC器件AD9048,其最大转换速率为35MSPS,分辨率为8位。利用高速双极工艺制造,采样速率快,频带宽,无代码遗失,输入电容小(仅为16pF),功耗低(为500mW)。AD9048内部时钟锁定比较器可使编码逻辑电路和输出缓冲寄存器作在35MSPS的高速,并避免了多数系统对取样保持电路(S/H)和跟踪保持电路(T/H)的需要。数字输入、输出及控制电平与TTL兼容。AD589和AD741、2N3906等构成稳压可调电路,提供给9048的RB、RT接地。AD9618作为输入缓冲放大器[3]。由于AD9048的数据输出没有三态门控制,故在输出加上74LS241作三态门控制。AD9048是否工作取决于输入转换脉冲信号,在脉冲信号上升沿取样。转换脉冲来自采样频率控制电路中的8254分频器的输出。

     1.2 高速寻址

     对于高速数据采集系统,A/D转换应不受CPU控制。每当ADC转换一次后,由控制电路发出相应的信号,将ADC转换结果写入高速缓存RAM某单元中,再使地址计数器加1,直到地址计数器记满后产生采样结束信号,封锁RAM写信号,利用二进制地址发生器的最高位通过中断方式通知主机采样已完成。

     地址计数器可根据地址位数由若干同步记有选举权器级联而成,五片74LS163可构成19位地址形成电路。计数器每收到一个脉冲即产生一个地址。地址的初值可通过时序控制电路清零。若采用循环地址,则在计数满后,用进位信号迫使计数器的同步预置电平发生变化,使计数器恢复初值,进入新一轮计数。

     1.3 快速存储

     单片机与上位PC机间串口通讯的数据传输速率往往不能满足实时要求;DMA通道最的大数据传输率也不超过5MB/s[1],这显然无法满足本系统中高达20MB/s的采样速度。为了解决高速数据采集与低速数据传输的矛盾,在单片机系统中,数据存储器选用双端口RAM IDT7134(图1中RAM1)。在上位PC主机与单片机之间建立了一个4K字节大小的缓冲区,单片机只须将经过预处理的采样值通过一个端口存放缓冲区,上位PC主机通过另一端口从缓冲区取数据。这样就解决了高速采样与低速数据传输的矛盾,可满足实时采集和控制的要求。
     [page]
     1.4 总线控制

     单片机系统总线上挂有若干RAM或I/O口,寻址和数据传输均由CPU发出指令通过系统总线实现的。对于高速数据采集,为了提高寻址和数据传输速度,避免总线冲突或堵塞,必须建立局部总线。系统总线与局部总线应该既区别、又统一,既隔离、又结合,彼此通过合理的控制逻辑联系起来。

     总线仲裁的基本原则实际就是在不同的总线请求时,采用不同长度的读写周期,以使各个使用者对总线的占用时间互相交错,而使用者并不感觉到仲裁的存在。在内存映射的传输方式中,A/D不断地将转换的数据写入高速缓存RAM,CPU根据数据处理的需要从高速缓存RAM读取数据至双口RAM1,双口RAM1还需要将所有单元刷新一遍。这三种操作都要占用卡上的数据、地址总线。但它们发生的时间是随机的,因此对总线的占用必然会产生冲突,总线仲裁电路的功能就是对这三种操作进行协调。这里,通过五片74LS241二选一开关协调地址计数器与CPU1对高速缓存RAM读地址的冲突,二片74LS241协调高速缓存RAM与AD9048和双口RAM之间的数据传输的冲突。

     1.5 PC总线接口技术

     PC系统总线对4KB的双口RAM寻址是一个难点。本数据采集卡采用PC总线,又称8位ISA总线。它使用灵活,便于同8位单片机构成接口电路。有62条引线,分五类:地址线、数据线、控制线、辅助与电源线。本数据采集卡只用了其中一部分引线:8条数据线、10条地址线、IOR和IOW控制线、电源线。译码电路详细框图如图2。

     本数据采集卡使用308H、309H、30AH三个口地址实现在板缓存4KB的寻址。这里的译码电路使用了GAL20V8和两片74HC574。当PC机要访问某一地址时,首先写入双口RAM的低8位地址。此时GAL20V8的输出信号选中74HC574(右),将PC-DB上的数据锁存,形成双口RAM的低8位地址Addrl;然后写入双口RAM的高8位地址。GAL20V8的输出信号选中74HC574(左),将PC-DB上的数据锁存,形成双口RAM的高8位地址Addrh。最后通过选中双口RAM的片选端cs,完成一次数据的读/写过程。

     1.6 采样频率控制电路

     采样频率挖掘电路是由晶振、可编程分频器8254及一些控制电路组成。8254是可编程分频器,工作频率在8MHz~20MHz。通过不同的分频数,可以输出不同频率,分频数在值为2~65535。它的输出由触发控制电路控制。其输出时钟分别送往地址计数器、高速缓存RAM的写信号控制电路及AD9048的转换脉冲输入端。

     2 系统软件设计

     系统软件的主要功能是为用户提供一个良好的操作环境,及时响应用户的命令。用户操作界面采用Vi-sual basic语言编写。通过采用一系列命令。用户操作界面采用Visual basic语言编写。通过采用一个系列命令按键,将电力系统采集到的实际信号的波形、故障发生的时刻等映射到计算机屏幕上,用户可以对采集到的信息有一个直观的认识。用软件虚拟硬件操作界面,可以充分利用计算机的强大运算功能、灵活多变的软件优势和VGA强大的显示功能。为便于系统的扩充和软件复用,整个软件分为几个相对独立的功能模块,模块内代码封装,相互之间设立统一的接口规范。
    

     由于本系统中不仅有高层次、面向磁般文件的操作,也有许多直接控制硬件的操作,采用了TURBO C和汇编语言混合编程技术,各模块根据操作对象采用适当的语言。这样可以同时利用高级语言编程方便、结构性好、汇编语言快速、灵活、针对性强的特点。

     系统软件框图如图3所示。

     硬件驱动程序用于完成对硬件的操作,全部采用汇编语言编写。使用系统前,先运行本程序,程序修改PC机系统中断,运行后常驻内存,和主程序的接口通过标准软中断形式。

     高速图形单元是对PC机VGA寄存器和显示存储器的直接操作,通过调用相关函数和VGA图形库,以较快速度将采样信号显示出来。

     数据分析单元主要是对采样信号进行后处理,可以完成小波变换、信号奇异性检测、谱分析和相关分析等数据处理功能,并通过波形输出单元同时将时域信号和分析结构用曲线显示来出。

     整个系统提供给用户的是一个基于WINDOWS的快速图形操作界面,系统主控程序协调整个系统的运行,控制硬件自动运行。在系统界面上包括用于波形显示的高速视口和命令按键等,可以通过简单操作直观地观察实时采集到的数据波形、幅值和故障发生的时刻。同时提供了对外的软件接口,用户可以按照规定的格式组织数据,利用本系统强大的数据分析功能处理数据。

     本高速采集卡具有采样速率高、运行方式灵活、同步时钟精度高并符合ISA总线标准等特点。以DS80C320单片机为核心,采用GPS同步时间,配合适当的外围设备及合理的总线控制技术实现高速数据采集。同时兼有数字存储示波器功能和数据分析能力,可以广泛用于电力测量、电力系统故障定位和继电保护领域

关键字:ISA总线  同步数据  采集系统 引用地址:基于ISA总线的高速同步数据采集系统设计

上一篇:CAN总线分布式系统适配卡和控制单元设计
下一篇:嵌入式视频图像压缩模块的USB接口设计

推荐阅读最新更新时间:2024-05-02 21:56

用FPGA实现高速大图像采集系统
随着各种高速长时间物理实验要求的不断提高,系统对高速的数据采集模块的需求也越来越高,在许多特殊应用的场合中,系统也需要对大量突发的数据进行采集处理,用FPGA实现的高刷新率高分辨率图像采集系统,用于船载雷达图像记录。该系统由AD、FPGA、SDRAM组成,AD芯片把雷达提供的以VGA接口方式给出的图像信号转换成数字信号,FPGA控制时序通过整页突发的模式写入SDRAM中,并提供了后续处理的接口。 中国船级社规定从2004年开始,在国内和国际航行的船舶中都必须安装船载航行数据记录仪,其中船载雷达图像记录仪是很重要的一部分,船载雷达图像按VGA图像标准输出,其分辨率在640×480-1280×1024之间,刷新率在60-85Hz
[嵌入式]
用FPGA实现高速大图像<font color='red'>采集系统</font>
基于模糊控制的远程康复信息采集系统设计
1 引言   远程康复是一项现代信息及通信技术与康复医学相结合的多学科交叉课题,它可以被定义为:在综合运用通信、远程感知、远程控制、计算机、信息处理等技术的基础上,实现的远方康复医疗服务。   国外在此方面的研究出发点各有不同,归纳起来,主要是将远程康复系统当作一种通信手段,来消除辅助器具评价专家与远方残疾人士之间的空间障碍,对如何把远程康复系统本身作为一种辅助器具评价诊断系统,促进康复医学的发展等方面,虽有所提及,但尚未作实质性研究。国内在这方面的产品,仅见深圳残联自行研制开发的全国第一个残疾人远程康复系统的报导,该系统着眼于专家和病人的沟通与交流,使残疾人在网上可以向专家进行康复咨询,得到康复方面的建议。   从目前国内外
[单片机]
基于模糊控制的远程康复信息<font color='red'>采集系统</font>设计
嵌入式远程视频采集系统的设计与实现
多媒体通信技术的发展为信息的获取和传输提供了丰富的手段,视频采集是其中不可缺少的重要组成部分,该系统基于S3C2410的ARM9芯片和嵌入式Linux操作系统,采用USB摄像头捕捉视频,经MPEG-4算法压缩编码,系统直接与网络相连,用户使用标准的网络浏览器和流媒体播放程序即可查看远程视频影像。 1 硬件系统 系统硬件平台选用北京博创公司的UP-NETARM2410开发板,该系统基于ARM9架构嵌入式芯片S3C2410,稳定工作在202MHz主频,板载64MB SDRAM 64MB FLASH,主板资源包括:主USB口、从USB口、10M/100M以太网口,触摸屏、彩色LCD、键盘、8个用户自定义LED数码管, A/D,RTC电
[单片机]
基于ZigBee 的多点温度采集系统设计与实现
1 引言 随着生产技术的提高, 环境温度指标越来越多的影响到生产效率、能源消耗和生活水平。不管是工业、农业、军事及气象领域, 还是日常生活环境, 都需要对温度进行监测。因而,设计可靠且实用的温度采集系统显得非常重要。 在传统的温度采集系统中, 节点一般采用有线连接方式, 布线繁琐, 扩展性和可移植性较差。尤其对于广阔空间环境中的温度采集,如果采用有线方式其成本和功耗都比较高。而ZigBee 作为一种新兴的短距离、低功耗、低成本的无线通信技术, 能广泛应用于工业控制、消费电子、家庭自动化、医疗监控各种领域。 本文设计了一种基于ZigBee 无线技术的多点温度采集系统, 实现了主从节点间数据的无线传输, 同时上位PC 机采用串口与主节点
[嵌入式]
智能压力传感器无线数据采集系统
0 引 言 随着无线通信技术、计算机技术的高速发展并应用到传感器技术中,使压力传感器的无线数据采集成为可能,其特有的性能比传统压力传感器更具优势。它可应用于布线和电源供给困难的区域、人员不能到达的区域(如高温、严寒、高湿的区域,受到污染的区域或环境被破坏的区域)和一些临时场合等,实现了传感系统的远程测试,这也是信息时代测试的必然趋势。 1 系统设计 本文设计的压力传感器无线采集系统由前端传感器数据采集发射部分及末端的数据接收部分组成。图1所示为传感器数据采集发射部分(上)和接收部分(下)的方框图。 传感器数据采集发射部分由压力传感器、温度传感器、信号处理部分、微处理器(一般是单片机)和无线发射电路组成。压力和温度传感器获取
[传感技术]
用CPLD实现单片机与ISA总线接口的并行通信
摘要:介绍了用ALTERA公司MAX7000系列CPLD芯片实现单片机与PC104ISA总线接口之间的关行通信。给出了系统设计方法及程序源代码。 关键词:CPLD ISA总线 并行通信 CPLD(Complex Programmable Logic Device)是一种复杂的用户可编程逻辑器件,由于采用连续连接结构,易于预测延时,从而使电路仿真更加准确。CPLD是标准的大规模集成电路产品,可用于各种数字逻辑系统的设计。近年来,由于采用先进的集成工艺和大指量生产,CPLD器件成本不断下降,集成密度、速度和性能大幅度提高,一个芯片就可以实现一个复杂的数字电路系统;再加上使用方便的开发工具,使用CPLD器件可以极大地缩短产品开发周期
[工业控制]
激光扫描车身坐标测量数据采集系统的设计
 随着汽车的普及和维修业的不断发展,人们对汽车车身在维修中的检测系统提出了越来越高的要求。传统的机械式测量系统已经不能满足现代汽车测量和维修检测的要求。在国外,意大利的Spanesi公司、瑞典的Caroliner公司开发的车身电子测量系统在测量精度、操作性方面虽有一定的优势,然而它们不能进行同时多点测量,已不能适应现代汽车维修业对检测技术的要求。利用激光扫描技术可实现对车身三维尺寸的测量,满足了现代汽车维修业对检测技术的新要求。对于激光扫描测量的方法,国内还鲜有相关的报道 。  基于合作靶标的激光扫描车身坐标测量系统,是运用四光束激光扫描测量原理,综合运用激光、光电、精密测量等技术进行非接触二维或者三维坐标测量的检测系统。它具有非
[嵌入式]
基于DSP和PCI总线的通信数据采集系统
    摘要: 介绍一种基于DSP和PCI总线的移动通信数据采集系统。提出了一种双映射方式,成功地解决了DSP的主机通信接口(host port interface,简称HPI口)和PCI9052之间的通信连接。     关键词: 数字信号处理器 数据采集 PCI总线 随着移动通信突飞猛进的发展,移动通信的数据业务量急剧上升,监控大容量的移动数据业务成了电信运营商刻不容缓的需求。而移动通信数据的传输一般都是基于E1链路。因此从E1链路上采集通信数据成了移动数据业务监控最基础的一部分。 数字信号处理器能够高速地处理数据并具有强大的数字吞吐能力,在数据采集领域获得了广播的应用。而PCI总线也因为极高
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved