XScale PXA270在Linux下的FPGA设备驱动

发布者:ShimmeringMoon最新更新时间:2012-06-02 来源: 单片机与嵌入式系统应用 关键字:XScale  PXA270  FPGA  Linux  驱动 手机看文章 扫描二维码
随时随地手机看文章

引言

  Intel公司推出的XScale采用ARM V5TE结构,是Strong ARM的升级换代产品。XScale PXA270处理器最高主频可达624 MHz,加入了Wireless MMX、Intel SpeedStep等新技术,以其高性能、低功耗、多功能等特点在信息家电、工业控制等领域得到了广泛的应用。在嵌入式控制中,“微处理器+FPGA”是一种常用的解决方案。FPGA(现场可编程门阵列)有编程方便、集成度高、速度快等特点,电子设计人员可以通过硬件编程的方法来实现FPGA芯片各种功能的开发。在我们的一个数控平台的研究项目中,采用XScale PXA270作为主CPU,并对其进行FPGA扩展,使其具有插补、电机驱动、信号处理、I/O口扩展的功能。Linux以其内核精练、高效,源代码开放且免费等优势,在嵌入式领域得到了广泛的应用。下面以Intel XScale PXA270上的Altera FLEX/ACEX的应用为例,详细介绍Linux下FPGA设备驱动的实现。

1  Altera FLEX/ACEX芯片结构

  Altera FLEX/ACEX芯片是基于查找表LUT(LookUpTable)原理而实现的。LUT本质上就是一个RAM。目前FPGA中多使用4输入的 LUT,所以每个LUT可以看成一个有4位地址线的16×1的RAM。当用户通过原理图或HDL语言描述一个逻辑电路以后,FPGA开发软件会自动计算逻辑电路的所有可能的结果,并把结果事先写入RAM。这样,每输入一个信号进行逻辑运算就等于输入一个地址进行查表,找出地址对应的内容,然后输出即可。由于LUT主要适合SRAM工艺生产,所以目前大部分FPGA都是基于SRAM工艺的,而SRAM工艺的芯片在掉电后信息就会丢失,一定要外加1片专用配置芯片(本实验电路使用Altera EPC2LC20)。在上电时,由这个专用配置芯片把数据加载到FPGA中,然后FPGA即可正常工作。由于配置时间很短,因此不会影响系统正常工作。在使用ACEX1K50之前,应对其进行设计编程,实现相应寄存器及I/O口的功能。有关FPGA的详细内容请参阅相关资料。

2  Intel XScale PXA270处理器的系统存储器接口

  PXA270处理器的可编程静态存储体系结构如图1所示。


图1  PXA270静态存储体系结构

  在系统上, ACEX1K50位于nCS<2>上,物理地址0x8000000~0x8001000共4K的静态地址空间。图2表示了Intel XScale PXA270与ACEX1K50的硬件连接关系。


图2  Intel XScale PXA270与ACEX1K50的硬件连接

3  Linux下ACEX1K50设备驱动的实现

3.1  Linux下设备驱动基本原理

  设备驱动程序是应用程序与硬件之间的一个中间软件层,设备驱动程序为应用程序屏蔽了硬件的细节。这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它主要实现的功能有:对设备进行初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据,回送应用程序请求的数据以及检测和处理设备出现的错误。

  Linux将设备分为最基本的两大类:一类是字符设备;另一类是块设备。字符设备和块设备的主要区别在于是否使用了缓冲技术。字符设备以单个字节为单位进行顺序读/写操作,通常不使用缓冲技术;块设备为了提高效率,利用一块系统内存作为读/写操作的缓冲区,由于涉及缓冲区管理、调度和同步等问题,实现起来比字符设备复杂得多。

  Linux通过设备文件系统对设备进行管理,各种设备都以文件的形式存放在/dev目录下,称为“设备文件”。应用程序可以像普通文件一样打开、关闭和读/写这些设备文件。为了管理这些设备,系统为设备编了号,每个设备号又分为主设备号和次设备号。主设备号用来区分不同种类的设备,而次设备号用来区分同一类型的多个设备。Linux为所有的设备文件都提供了统一的操作函数接口,方法是使用数据结构struct file_operations。这个数据结构中包括许多操作函数的指针,如open()、close()、read()和write()等,但由于外设的种类较多,操作方式各不相同。struct file_operations结构体中的成员为一系列的接口函数,如用于读/写的read/write函数和用于控制的ioctl等。打开一个文件就是调用这个文件file_operations中的open操作。不同类型的文件(如普通的磁盘数据文件)有不同的file_operations成员函数,接口函数完成磁盘数据块读/写操作;而对于各种设备文件,则最终调用各自驱动程序中的I/O函数进行具体设备的操作。这样,应用程序根本不必考虑操作的是设备还是普通文件,可一律当作文件处理,具有非常清晰、统一的I/O接口,所以file_operations是文件层次的I/O接口。[page]

3.2  ACEX1K50在Linux下设备驱动的实现

  在驱动程序中使用内存映射可以提供给用户程序直接访问设备内存的能力。使用内存映射的好处是处理大文件时速度明显快于标准文件I/O,无论读/写,都少了一次用户空间与内核空间之间的复制。在用户空间对ACEX1K50 FPGA设备的访问是通过内存映射来实现的。

  ACEX1K50可以看作是硬件连接在PXA270微处理器的nCS<2>上的一段物理地址来寻址。因为有虚拟内存管理单元,所以如果在Linux下,必须先把物理地址映射到虚拟地址空间,然后才能对该段地址进行读/写。

  在内核驱动程序的初始化阶段,通过ioremap()将ACEX1K50的这段物理地址映射到内核虚拟空间;在驱动程序的mmap系统调用中,使用remap_page_range()将该块ROM映射到用户虚拟空间。这样内核空间和用户空间都能访问ACEX1K50的这段被映射后的虚拟地址。

  由于ACEX1K50位于nCS<2>上,参照PXA270静态存储体系结构映射表,其物理起始地址为0x08000000。另外,其设备名称及主次设备号定义如下:

  #define FPGA_PHY_START0x08000000
      // nCS<2>: PAX270平台
  #define FPGA_PHY_SIZESZ_4K
      // nCS<2>: Slot FPGA物理基大小为4K
  #define DEVICE_NAME"PXA270 FPGA"
  #define FPGARAW_MINOR 1
  #define FPGA_Devfs_path"fpga/0"
  static int fpgaMajor = 0;

  其中FPGA主设备号定义为零,使得操作系统可以随机为该设备分配主设备号。

  ioremap()的作用是把一个物理内存地址点映射为一个内核指针,被映射数据的长度由size参数设定。该函数的实质是把一块物理区域二次映射到一个可以从驱动程序里访问的虚拟地址上去。以下是该函数的定义:

  void *ioremap(unsigned long phys_addr, unsigned long size);

  设备驱动通过fpga_init()函数初始化FPGA设备,最终通过init_module(fpga_init)在内核启动时初始化FPGA设备。

  fpga_init()函数的流程如图3所示。


图3  fpga_init()流程

  ioremap()调用的语句如下:
pxa270_fpga_base= (unsigned long) ioremap(FPGA_PHY_START, SZ_4K);

  可以通过ioremap()调用的返回值pxa270_fpga_base来判断FPGA物理地址到内核虚拟空间是否映射成功。

  if(!pxa270_fpga_base) {
  printk("ioremap pxa270 fpga failed\n");
  return -EINVAL;
}

  向设备文件系统注销FPGA设备通过调用cleanup_module()函数来实现。其代码如下:

  void __exit fpga_exit(void) {
    #ifdef CONFIG_DEVFS_FS
    devfs_remove(FPGA_Devfs_path);
    #endif
    unregister_chrdev(fpgaMajor, DEVICE_NAME);
  }
  cleanup_module (fpga_exit);

  在向内核设备文件系统注册该FPGA驱动后,还须实现设备驱动的file_operations结构。ACEX1K50的设备驱动定义了如下file_operations成员函数:

  static struct file_operations pxa270_fops = {
  owner:THIS_MODULE,
  open:fpga_open,
  mmap:fpga_mmap,
  ioctl:fpga_ioctl,
  release:fpga_release,
  };[page]

  其中fpga_open和fpga_release系统调用的功能只简单地实现了FPGA设备使用计数器的递增与递减,fpga_ioctl系统调用也只是简单的打印一条没有ioctl控制的信息提示。这里不再分析实现的具体代码。下面具体分析fpga_mmap的实现过程:

  static int fpga_mmap(struct file *filp, struct vm_area_struct *vma) {
  unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
  unsigned long physical = FPGA_PHY_START + off;
  unsigned long vsize = vma->vm_end - vma->vm_start;
  unsigned long psize = FPGA_PHY_SIZE- off;
    if (vsize > psize)
      return -EINVAL; //spans too high
    vma->vm_flags |= VM_IO|VM_RESERVED;
    vma->vm_page_prot=pgprot_noncached(vma->vm_page_prot);
    remap_page_range(vma, vma->vm_start, physical, vsize, vma->vm_page_prot);
    return 0;
  }

  fpga_mmap(struct file *filp, struct vm_area_struct *vma)系统调用允许直接将FPGA设备内存线性地映射到用户进程的地址空间中。fpga_mmap系统调用是通过调用 remap_page_range()函数来实现一段线性物理地址的映射,调用remap_page_range()函数需要填写 vm_area_struct结构的几个关键字段。

  int remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long to, unsigned long size, pgprot_t prot)函数每个参数的意义说明如下:

  vm_area_struct *//虚拟内存区域(VMA)指针
  unsigned long from//需要映射的用户虚拟地址的起始位置
  unsigned long to//虚拟地址所映射到的物理地址
  unsigned long size//被重映射区域的大小,以字节为单位

4  ACEX1K50设备驱动在用户程序中的使用

  当设备驱动实现后,就可以在用户空间使用该设备了。在用户空间主要是通过调用mmap()函数来实现对FPGA设备的访问。以下是用户空间应用程序的一个示例:

  ……………………………………………………………………
  fd = open("/dev/fpga/0",O_RDWR);//打开设备文件
  if(fd < 0){
    printf("####fpgadevice open fail####\n");
    return (-1);//判断打开设备文件是否成功
    }
  iobase = (unsigned char *)mmap(0, 4096,PROT_READ | PROT_WRITE, MAP_SHARED,fd,0);//经过地址映射后,可对FPGA的寄存器进行一系列操作
  ……………………………………………………………………
  close(fd);//关闭设备文件

结语

  本文通过介绍ACEX1K50在Linux操作系统下设备驱动的实现过程,为FPGA在嵌入式领域的应用提供了一种方法。在实际应用中,通过用户程序能够很好地实现对FPGA硬件编程后的各种功能的控制。

参考文献

[1]  Alessandro Rubini, Jonathan Corbet. Linux设备驱动程序.魏永明,等译.第2版.北京:中国电力出版社,2004.
[2]  Intel Company. Intel PXA270 Processor Family Developers Manual. 200410.
[3]  倪继利. Linux内核分析及编程.北京:电子工业出版社,2005.
[4]  林容益. CPU/SOC及外围电路应用设计——基于FPGA/CPLD. 北京:北京航空航天大学出版社,2004.

关键字:XScale  PXA270  FPGA  Linux  驱动 引用地址:XScale PXA270在Linux下的FPGA设备驱动

上一篇:嵌入式Linux在Blackfin处理器上的应用
下一篇:Marvell助力Dell 打造Copper ARM架构服务器

推荐阅读最新更新时间:2024-05-02 22:05

基于CSC6562A+A433的LED驱动电源设计方案
  随着大功率LED光源的大量使用,对LED驱动器的技术要求是与日俱增。本文提供LED照明应用针对18W外置电源的设计。CSC6562A应用在由临界电流模式控制IC所控制的反激转换电路,能够高效率,高性能。同时提供各种保护以提高驱动的可靠性。    基于CSC6562A+A433实现的LED驱动电源设计   反激AC-DC转换从成本和功率密度的角度,仍是比二级转换更具吸引力的解决方案。反激AC-DC转换器可直接将AC输入电压转换成DC输出电压,并且不需要前稳压器,如图一所示: 图一 反激AC-DC转换器   图二所示是返驰式反激AC-DC转换器的电路图。CSC6562A是作为控制器使用,并应用CV(恒定电压)
[电源管理]
基于CSC6562A+A433的LED<font color='red'>驱动</font>电源设计方案
CH454 数码管显示驱动和键盘扫描控制芯片
1、概述   CH454 是 数码管显示 驱动和 键盘扫描 控制芯片。CH454内置时钟振荡电路,可以动态驱动8 只16段的数码管或者128 只LED,支持11 段、14 段、16 段×8 以及17 段×7 等;同时还可以进行64 键的键盘扫描;CH454 通过2 线串行接口与单片机等交换数据。      2、特点   2.1. 显示驱动   ● 内置电流驱动级,段电流不小于20mA,字电流不小于150mA。   ● 动态显示扫描控制,直接驱动8 位16 段的数码管或者128 只发光管LED。   ● 各数码管的数字独立闪烁控制,可选快慢两种闪烁速度。   ● 通过占空比设定提供16 级亮度控制。   ● 部分段
[模拟电子]
CH454 数码管显示<font color='red'>驱动</font>和键盘扫描控制芯片
一块STM32最小系统板来驱动电机
工作准备 驱动电机 1、硬件准备 一块STM32最小系统板:可以用自己的,也可以用nucleo板 驱动板:针对的是中小功率的伺服电机、马达,所以驱动模块一般可以选择分立的MOSFET或者集成的IPM模块,驱动板上需要包含: 位置信号接口:比如编码器和霍尔位置传感器 相电流采样与信号调理电路 过压、欠压、过流、过温保护 一款电机,这里需要知道电机的参数信息和位置接口 带有限流功能的数字电源或者电流限制在额定电流以下的开关电源 2、了解套件P-NUCLEO-IHM002,电机驱动板的各部分电路,电机的参数说明: Bull-Runningmodel BR2804-1700 kV Nominalvoltage
[单片机]
一块STM32最小系统板来<font color='red'>驱动</font>电机
HLK-W801-LVGL8之触摸驱动
前言 本篇完成最后一部的触摸驱动移植 前面两部分: 第一部分:HLK-W801-LVGL8之源码移植 第二部分:HLK-W801-LVGL8之LCD驱动 触摸驱动实现 针对触摸驱动,在源码demo中也有关于驱动芯片的实现,这里直接使用XPT2046的相关源代码; 结合驱动XPT2046.c/h的实现,具体只需完成 xpt2046_init()和xpt2046_read()两个接口的编写调试工作,平台驱动主要为SPI驱动,完成lv_drv_conf.h中输入设备的驱动接口: #define LV_DRV_INDEV_IRQ_READ // 读取触摸笔中断信号电平 #define LV_DRV_INDEV_SPI_CS(va
[单片机]
HLK-W801-LVGL8之触摸<font color='red'>驱动</font>
三种高亮度 LED 照明的驱动设计
高亮度 LED 在照明应用中的使用越来越广泛。我们在这里将介绍一种简单的“气氛照明灯”,其仅使用了少量的组件。所有这三 种 LED 均由使用开关调节器的恒定电流来供电,同时亮度控制由能够产生三种 PWM 信号的 MSP430 微控制器来完成。可以用磨 砂玻璃外壳将印刷电路板安装到台灯中,或者也可以和 LED 聚光灯一起使用来进行间接照明。无论其功耗有多大,现在的 LED 通常都使用一个恒定电流源来驱动。这是因为以流明 (lm) 为单位的光输出量和电流量成正比例 关系。因此,所有的 LED 厂商都规定了诸如光输出(有时称为光学效率)、可视角度和波长等参数,作为正向电流 IF 的函数,而非像人 们所期望的那样作为正向电压 VF 的函数
[电源管理]
三种高亮度 LED 照明的<font color='red'>驱动</font>设计
Linux驱动学习笔记之触摸屏驱动
触摸屏归纳为输入子系统,这里主要是针对电阻屏,其使用过程如下 当用触摸笔按下时,产生中断。 在中断处理函数处理函数中启动ADC转换x,y坐标。 ADC结束,产生ADC中断 在ADC中断处理函数里上报(input_event)启动定时器 再次启动定时器(可以处理滑动、长按) 松开按键 其驱动程序的写法和之前写输入子系统的写法基本上一致。 写出入口函数,出口函数并加以修饰,加入相关头文件,然后开始完善各函数,在入口函数中分配input_dev结构体,设置(能产生哪类事件,能产生这类事件中的哪些事件),注册设备,硬件相关的操作等。出口函数中主要对之前注册、分配的一些资源进行释放。 还应根据2440数据手册ADC转换和触摸屏那一章,对
[单片机]
ARM与FPGA结合的优势分析
对所有的嵌入式系统来说,必然会在一定的设计阶段进行决策,决定对给定的应用到底是选择ASSP 还是采用合适的片上系统 (SoC) 解决方案。这两种选择都需要交替使用并进行折衷。如果选用 ASSP,虽然它是一款便于实施的标准现成解决方案,但对许多新型应用来说,会严重阻碍设计团队的产品定制与差异化能力的发挥。毫无疑问,用 FPGA 或 ASIC 从头开始构建 SoC 可以实现终极定制。尽管一些设计团队能证明构建 ASIC 是合理的,但是越来越多的OEM厂商利用 FPGA,从成本、功耗、密度和性能角度而言提供与ASIC相同的功能,但是风险却大大降低了。 赛灵思可扩展式处理平台的推出,意味着嵌入式系统设计人员在做出决策时多了一
[嵌入式]
浅谈之我见LED照明设计的驱动芯片选用技巧
LED 照明灯具在近期得到飞跃的发展,LED作为绿色环保的清洁光源得到广泛的认可。LED光源使用寿命长、节能省电、应用简单方便、使用成本低,因而在家庭照明都将得到海量的应用。早在2008年,全球每年家庭照明灯座出货量约为500亿个。 LED光源的技术日趋成熟,每瓦发光流明迅速增长,促使其逐年递减降价。LED绿色灯具的海量市场和持续稳定数年增长需求将是集成电路行业继VCD、DVD、手机、MP3之后的消费电子市场的超级海啸!LED灯具的高节能、长寿命、利环保的优越性能获得普遍的公认。 1、LED高节能:直流驱动,超低功耗(单管0.03~1W)电光功率转换接近100%,相同照明效果比传统光源节能80%以上。 2、LED长寿命:LED光源
[电源管理]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved