基于SPI总线和ADE77xx专用芯片的三相多功能电度表的原理与应用

发布者:RadiantDreams最新更新时间:2012-11-02 来源: 21ic 关键字:SPI总线  ADE77xx  电度表  分时计费 手机看文章 扫描二维码
随时随地手机看文章
引言

我国经过二十多年的改革开放和技术引进,在高技术方面已与国外缩小了不少差距,但能源利用效率,尤其是电能的综合利用率仍然差距较大。“十一五”规划提出了达到同一GDP增长率需节能20%的奋斗目标,以科学的发展观,创新、节能、环保是当前技术革命的三大重点。

我国是能源消耗大国,而能源又十分缺乏,它极大地制约了我国国民经济的健康、快速、持续发展,因此一方面要大力寻找新能源,如风能、核能、太阳能,同时又要大力节约能源。

用SPI总线把ADE77xx系列专用电能计测芯片如表1所示和单片微机组合而成的多功能、峰谷用电,分时计费的电度表是目前的主流,应大力推广。

笔者曾用SPI总线[1]把ADE7758[2]和MCU组成多功能——峰谷用电、分时计费电度表,下面就研制过程中的一些关键问题作一简要介绍,与同行商榷。

1 电度表工作原理

1.1 原理框图

电度表主要有信号采集传感器和电压、电流取样电路、ADE77xx计量芯片和电能脉冲输出驱动电路、MCU单片微机、外扩铁电E2PROM、晶体和时钟电路、128×64点阵LCD、RS485及隔离驱动串行接口、开关量输出、4~20mA模拟量输出、键盘接口等组成。ADE7758、E2PROM、RTC等3种芯片与MCU之间用SPI总线、CS片选和不同中断引线连接成系统。上述系统较容易实现0.5级多功能电度表。


图1 电度表原理框图

1.2 三相电压、三相电流取样电路

电压取样采用玻膜合金制成的微型电压型电流互感器(PT),其变比为2mA/2mA,在电压动态范围为(50~200)%Un(Un为额定电压,AC220或AC380)时其比差非线性度为±0.1%,角差非线性度为±5角分。负载阻抗≤300Ω。电压互感器输出直接与ADE7758相连,单端输入,电路结构如图2所示。


图2 电压采样电路

当输入电压为AC220V时,图2中R用金属氧化膜电阻,其温度系数应选得较小。RL为总的负载电阻,应≤300Ω,~280V时为满量程。R1、C1为抗混叠滤波。
当输入电压为AC380V时,图2中电阻R取200 kΩ/2W×2,AC500V满量程。

电流取样选用高精度微型电流互感器CT,电路结构如图3所示。与ADE7758的连接采用差动输入,以提高抗共模干扰能力。

CT1为0.2级电力电流互感器,仪表可测最大电流为7000A,K1(CT1互感器变比,1~1400倍,可根据主回路电流I1大小选择K1)为CT1变比,K1=I1/I2,I2一般取5A,根据用户需要也可选1A或其他电流。

CT2为玻膜合金制成的微型电流互感器,K2(CT2的变比)一般取5A/5mA(为1000倍),原边输入电流(I2)的5%~120%(250mA~6A)范围内比差非线度为±0.1%,负载阻抗
(R)≤100Ω,角差非线度±5角分。R取值与ADE7758输入量程有关。


图3 电流采样电路

1.3 ADE7758专用芯片

ADE7758具有6路24位Σ—ΔADC,采样速率最高为26kSPS,三路电流采样为差动输入,抗共模干扰能力较强,三路电压采样为单端输入。电压和电流信号最大输入为±0.5V,±0.25V,±0.125V,可编程增益控制。AD具有内部基准参考电压,若电度表的测量精度高于0.5级(如需制造0.2级,0.1级)时建议使用AD公司的高精度电压基准芯片(如ADR441B;2.500V±1mV,3PPm/℃)。 [page]

① 支持有功/无功/视在功率、电压有效值、电流有效值和采样波形数据以及功功率的感性和容性。
② 有功能量测量精度在动态范围1~1000、@25℃条件下测试,高于±0.1%。
③ 二路脉冲输出,一路有功功率,另一路可编程无功功率或视在功率输出。
④ 功率、相位、rms可补偿校正。
⑤ 片内可编程欠电压门槛和过电压检测。
⑥ 过电流检测和峰值电流检测。
⑦ 电压过零检测周期或频率;
⑧ 相序检测和相位补偿,电源电压监视;
⑨ 内部具有硬件电路的“加,乘,平方,开方,积分,低通滤波,高通滤波,补偿校正等运算。
⑩ SPI接口+中断(IRQ)输出与CPU接口,SPI接口中有数据输入(DIN),数据输出(DOUT)、时钟(SCLK)和片选(CS)等4个引脚,一个中断(IRQ)输出引脚。

11 具有中断屏蔽寄存器和中断标志位寄存器,当相应屏蔽位打开,相应功能完成时即产生中断,并将对应的中断标志位置“1”,向CPU发出中断请求,当CPU响应中断后即可读取ADE7758相应功能寄存器中的数据,数据读取后,由CPU进行处理并清除ADE7758中的中断标志位。

中断源共有19种;
功率累计积分达到寄存器满量程的一半时产生中断,含有功、无功、视在功率;
A、B、C三相中任一相电压低于欠电压温度阀值时产生中断;
A、B、C三相中任一相电压过零超时,相当于频率失调时产生中断;
A、B、C三相中每相电压过零点时产生中断,用于测量频率或周期;
能量累加寄存器半周期积分结束时产生中断;可读取电能;
电压或电流峰值超过时产生中断,用于过压检测和过流检测;
波形寄存器中出现数据时产生中断;
有功电能符号改变时(发电/受电变化时)产生中断;
无功电能符号改变时(感性/容性无功电能)产生中断;
三相相序错时产生中断。

对ADE7758使用时采用中断后读数同步性较好,该芯片在完成某项功能或检测异常时才产生中断,中断产生时,相应寄存器中的数据已经就绪,不宜采用CPU定时读取ADE7758
寄存器中存放的数据,前者是同步读数,后者是异步读数。如要提高测量精度,建议使用外接高精度基准电压芯片。

1.4 SPI总线

SPI总线是一种高速同步串行总线,两个芯片之间的数据速率可达几兆bps。我们用5Mbps传送。ADE7758与CPU之间有3个引脚,由于传送速率较高,因而二芯片必须靠近,只能布置在一块印制板内,故名“板内总线”,且数据线、时钟线之间最好用地线隔开,避免线间串扰。其原理框图如图4所示。


图4 SPI总线原理图

图4中:SDI为输入数据线;SDO为输出数据线;SCK为时钟线,主控制器发送时钟,从控制器接收时钟。MICROCHIP公司的PIC(CPU)芯片,SPI总线和I2C总线引脚共用,初始化程序中要预置成用于SPI总线功能。FREESCALE公司的CPU中SPI和I2C引脚是分开的。SPI总线数据传输时一般用中断方式,一个字节中断一次,故数据率较高,也可在一帧数据传送的第一字节产生中断,后续字节传送用查询。

使用SPI总线要注意的是数据传送速率与印制板布线两个问题。

2 实时时钟(RTC)与峰谷用电、分时计费

用SPI总线、ADE7758专用芯片、CPU组成的多功能电度表,容易达到0.5级精度,但电能计量的精度与实时时钟的温度稳定性和时间稳定性有密切关系,选择内置晶体的RTC价格较贵,若晶体外置则要考虑晶体的稳定性或采取必要的温度补偿措施。

这种多功能三相智能电表,通过键盘设定,LCD显示,人—机界面友好,容易实现峰谷用电,分时计费,适用于智能成套开关柜和各种工业、农业、国防的三相电度计量、收费。

3 结束语

ADE7758计量芯片与8位或16位单片微机组合成三相多功能电度表,容易实现0.5级的高精度,若使用0.1%线性度的电压互感器和电流互感器、具有温度修正的RTC可实现0.2级精度。

这类电度表精度高,可靠性好,使用键盘设定和LCD(128×64点阵)显示,汉字提示,界面友好,同时具有联网功能和电能脉冲输出,给用户带来极大的方便,在具有现场总线局域网的智能成套柜中,可直接将各种数据上传给中央控制室。

这种电表具有峰谷用电、分时计费功能,24小时内可分8小时段计费,可节约用电、平衡用电,提高电能的使用效率,符合我国节能降耗的国策,应大力推广使用。

ADE7758是AD公司1999年推出的芯片,06年又推出ADE7762,ADE7752B三相电能计算芯片;单相电度表也推出ADE71XX系列(具有防窃电功能)和ADE75XX系列,且将计量芯片与MCU(8052核心)组合成一个芯片,其造价更低,性能更好。我们应利用这类芯片,开发出价廉物美的智能型电度表。

参考文献
1 High Performance,Enhanced Flash Microcontrellers With 10-Bit A/D PIC18FXXX PIC micro 18FXXXX MCU系列参考手册.
2 Analug Device,Inc ADE7758 Poly Phase Multi-Function Energy Metering IC With Per Phase information.
关键字:SPI总线  ADE77xx  电度表  分时计费 引用地址:基于SPI总线和ADE77xx专用芯片的三相多功能电度表的原理与应用

上一篇:SERCON816型SERCOS总线控制器及其应用
下一篇:485集线器在总线型数据采集系统的应用分析

推荐阅读最新更新时间:2024-05-02 22:24

嵌入式系统中可配置式GPIO模拟SPI总线方法
在嵌入式系统处理器中有相当一部分处理器不带SPI接口,但基丁SPI接口的设备非常丰富,此外,SPI设备的不同以及处理器对GPIO口位寻址是否支持各处理器各有不同,因而不同处理器中软件模拟GPIO也各不相同。若能提供一种通用可配置可移植的GPIO模拟SPI总线的驱动则能很方便快捷的访问SPI设备,从而提高整个嵌入式系统的开发效率。本文针对GPIO口位寻址与否给出方面,给出了一种可配置GPIO模拟SPI总线的方法并详细介绍了其设计与实现过程,且具有代码小可移植性强使用方便等特点。 1 GPIO规范 SPI是一个全双工的串行接口。它设计成可以在一个给定总线上处理多个互联的主机和从机。在一定数据传输过程中,接口上只能有一个丰机和一个从
[嵌入式]
关于I2C和SPI总线协议
IICvs SPI 现今,在低端数字通信应用领域,我们随处可见IIC (Inter-Integrated Circuit) 和 SPI (Serial Peripheral Interface)的身影。原因是这两种通信协议非常适合近距离低速芯片间通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市场需求制定了这两种标准通信协议。 IIC 开发于1982年,当时是为了给电视机内的CPU和外围芯片提供更简易的互联方式。电视机是最早的嵌入式系统之一,而最初的嵌入系统是使用内存映射(memory-mapped I/O)的方式来互联微控制器和外围设备的。要实现内存映射,设备必须并联
[单片机]
关于I2C和<font color='red'>SPI总线</font>协议
基于一种通用SPI总线接口的FPGA设计与实现
  一、引言   SPI串行通信接口是一种常用的标准接口,由于其使用简单方便且节省系统资源,很多芯片都支持该接口,应用相当广泛。SPI接口的扩展有硬件和软件两种方法, 软件模拟 SPI接口方法虽然简单方便, 但是速度受到限制,在高速且日益复杂的数字系统中,这种方法显然无法满足系统要求,所以采用硬件的方法实现最为切实可行。当前,基于主从处理器结构的系统架构已经成为一种主流(如 DSP+FPGA,MCU+FPGA等),FPGA是在 ASIC的基础发展出来的,它克服了专用 ASIC不够灵活的缺点。与其他中小规模集成电路相比,其优点主要在于它有很强的灵活性,即其内部的具体逻辑功能可以根据需要配置,对电路的修改和维护很方便。目前, FPGA的
[嵌入式]
SPI总线在51单片机系统中的实现
  一个完整的单片机系统,通常包括键盘输入、显示输出、打印输出、数据采集等许多功能模块。这些功能模块一般是通过I/O端口实现与单片机的数据交换,但是单片机的I/O端口有限,且一般用来处理数字信号,从而产生了总线式传输模式。   现在大多数单片机都是传统的三总线结构,即地址,数据,控制三总线。由于方便控制,三总线得到广泛的应用。但是作为并行总线,它也有一定的局限性。不适合远距离的传输。与I/O口的数目存在矛盾。随着电子技术的进步,发展出很多新的总线接口,如USB、I2C、CAN、SPI、1-Wire等。这些总线的特点都是串行接口,只需要几根甚至一根线就可以实现数据的传输。本文通过对支持SPI总线的AD器件MAX189性能分析,简要介
[嵌入式]
单相电度表的反转
关键字: 单相电度表 反窃电 正转反转原理 一提到单相 电度表 的反转,人们立即会想到,是电表的进火线与出火线调换了。笔者在实践中发现,单相电度表的进火线与出火线不调换也能使单相电度表反转。如图1所示,电度表箱中有一块表反转,但进火线与出火线并没有反接。经仔细查找原因,发现本电表的用户将该表的出线在电度表箱外的某处与主火线相接,见图1中MN。 为有助于分析图1,先谈谈单相电度表的正确接线,如图2所示 端子1作为电源相线的进线端,端子3作为相线的出线端,端子4作为电源零线的进线端,端子5作为零线的出线端。当有负荷时,接通电源,进入电流线圈电流方向为端子1进和端子3出,电压线圈的电流方向为端子2进和端子5出
[电源管理]
单相<font color='red'>电度表</font>的反转
51单片机~DS1302时钟,SPI总线原理
(一)说明: (二)SPI总线原理: (三)日历时钟寄存器: 慢充电: BCD码: temp.h #ifndef __TEMP_H_ #define __TEMP_H_ #include reg52.h //---重定义关键词---// #ifndef uchar #define uchar unsigned char #endif #ifndef uint #define uint unsigned int #endif //--定义使用的IO口--// sbit DSPORT=P3^7; //--声明全局函数--// void Delay1ms(uin
[单片机]
51单片机~DS1302时钟,<font color='red'>SPI总线</font>原理
如何通过一个差分接口来延长SPI总线
本文将介绍如何通过一个差分接口来延长串行外设接口 (SPI) 总线,而这可以应用在支持远程温度或压力传感器的系统的设计。 在SPI应用中,主控器件和受控器件间的距离相对较近,而信号也通常不会传递到印刷电路板 (PCB) 之外。SPI信号类似于单端、晶体管-晶体管逻辑 (TTL) 信号,根据应用的不同,运行速率可高达100Mbps。一条SPI总线由四个信号组成:系统时钟 (SCLK) ,主器件输出从器件输入 (MOSI) ,主器件输入从器件输出 (MISO) 和芯片选择 (CS) 。主控器件提供SCLK,MOSI和CS信号,而受控器件提供MISO信号。图1显示了一条标准SPI总线的总线架构。 图
[嵌入式]
如何通过一个差分接口来延长<font color='red'>SPI总线</font>
SPI总线在系统中的应用
  1 引言   SPI(Serial Peripheral Interface--串行外设接口)总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOST和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。由于SPI系统总线一共只需3~4位数据线和控制即可实现与具
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved