如何为D类放大器选取合适的参数

发布者:学思者最新更新时间:2014-01-27 来源: eefocus关键字:D类放大器  BVDSS  MOSFET 手机看文章 扫描二维码
随时随地手机看文章
随着半导体器件和电路技术的最新发展,如今D类音频放大器在电视/家庭娱乐,音响设备和高性能便携式音频应用中得到广泛的应用。高效率,低失真,以及优异的音频性能都是D类放大器在这些新兴的大功率应用中得到广泛应用的关键驱动因素。然而,如果输出功率桥接电路中的MOSFET如果选择不当,D类放大器的上述这些性能将会大打折扣,特别是输出功率比较大的时候。因此,要设计一款具有最佳性能的D类放大器,设计师正确理解驱动喇叭的器件关键参数以及它们如何影响音频放大器的性能是至关重要的。

如我们所知,D类放大器是一种开关型放大器,它分别由一个脉冲宽度调制器(PWM),一个功率桥电路和一个低通滤波器组成,如图1所示。为了实现放大器的最佳性能,必须对功率桥中的开关进行优化,使得功率损耗、延迟时间、电压和电流毛刺都保持最小。因此,在这类放大器设计中,需要采用的开关应该具有低压降、高速的开关时间以及很低寄生电感。虽然这种开关有多种选择,但已证明MOSFET是用于这类放大器的最好开关,原因在于其开关速度。由于它是多数载流子器件,与IGBT或BJT这类器件相比,其开关时间比较快。但是要使D类放大器实现最好性能,所选的MOSFET必须能够提供最低的功、最小的延迟和瞬态开关毛刺。

于是,所选的MOSFET参数必须最优。关键的参数包括包括漏源击穿电压BVDSS,静态漏源通态电阻RDS(on),栅极电荷Qg,体二极管反向恢复电荷Qrr,内部栅极电阻RG(int),最大结温TJ(max),以及封装参数。这些参数的适当选择将会实现最低的功耗,改进放大器的效率,实现低失真和更好的EMI性能,以及减小尺寸和/或成本。

选择MOSFET参数

不过,在动手前,重要的是要理解一些基本指标,如放大器输出功率,负载阻抗(如100W功率输出到8Ω阻抗上),功率桥接电路拓扑架构(全桥还是半桥),以及调制度(80%-90%)。

考虑上述这些因素,第一步是要确定放大器的工作电压。因此这将决定MOSFET的额定电压。不过,当选择该额定电压时,还必须考虑其他一些因素,如MOSFET的开关峰值电压以及电源的波动等。如果忽略这一点,将会导致放大器的雪崩条件,从而将影响放大器的性能。于是,针对所期望的放大器输出功率和负载阻抗,功率桥电路拓扑结构,调制度,还要考虑到一个与电路相关的附加因子(通常为10-50%),最后可以通过方程1和方程2计算出最小的BVDSS。




这里,POUT为输出功率,而RLOAD为负载阻抗,M为调制度。

于是,利用方程1和方程2,得出表1。该表中给出了各种D类放大器所需的最小MOSFET额定电压。

表1:用于不同D类放大器结构的MOSFET额定电压。

[page]

由于BVDSS与MOSFET通态电阻RDS(on)有关,选择一个尽可能最低的BVDSS是很重要的,因为高的BVDSS将导致高的RDS(on),从而MOSFET的功耗将更高。

如今我们已经知道MOSFET的总功耗将决定放大器的效率。这些功耗是MOSFET的传导损耗,开关功耗以及栅极电荷损耗的总和。而且,MOSFET的结温TJ和散热片的大小取决于总功耗。因此,高功耗将导致结温增加,从而增加散热器的尺寸。

由于MOSFET的传导损耗直接与RDS(on)有关,对于标准的栅控MOSFET,通常该参数都将在数据页中给出,条件是25°C和VGS=10V。放大器工作期间,RDS(on)和漏电流决定了MOSFET的传导损耗,并可以容易地通过方程3计算出来。


由于RDS(on)与温度有关,在热设计中必须注意,以避免热量溢出。此外,所有工作条件下,结温TJ(max)都不能超过数据页中的规定值。因此,计算MOSFET的传导损耗时,必须采用TJ(max)和最大I D RMS 电流条件下的RDS(on)。从图2中可看到,较低的RDS(on)将导致较低的MOSFET传导损耗,从而将得到更高的D类放大器效率。

栅极电荷Qg是另一个直接影响MOSFET开关损耗的关键参数,较低的Qg将导致更快的开关速度和更低的栅极损耗。MOSFET的开关损耗定义为:


开关损耗是MOSFET导通和关断时开关时间所引起的,可以简单地通过将开关能量Esw与放大器的PWM开关频率fsw进行相乘而获得:


开关能量Esw通过下式获得:


式中,t为开关脉冲的长度。

利用放大器参数和MOSFET的数据页,可以通过公式7求得PSWITCHING。


式中,Vbus为放大器的总线电压,tr和tf则分别是MOSFET的上升和下降时间。Coss

为MOSFET的输出电容,Qr为MOSFET的体二极管反向恢复电荷,K为系数,该系数的引入原因是考虑到MOSFET的TJ以及特定的放大器条件,如IF和dIF/dt。相类似,栅极损耗可以通过下式获得:


式中为栅极驱动器的电压。

除了像MOSFET的开关延迟时间所引起的定时误差会影响放大器的线性度,Qg也会影响放大器的线性度。然而,相对于死区时间,由MOSFET开关所引起的定时误差就显得不太重要了,故可以通过选择合适的死区时间来大幅降低该误差。实际上,MOSFETQg对放大器的效率的影响要比对线性度的影响大得多。由于可以通过优化死区时间来改善线性度,应该降低Qg,这主要是为了实现较小的开关损耗。

 

体二极管和效率

MOSFET的结构中有一个内置固有的反向体-漏二极管,该二极管呈现为反向恢复特性。该特性对放大器的效率和EMI性能都有影响。可以通过将反向恢复电荷Qrr(由温度、正向电流IF和dIF/dt所决定)保持在最小值,使反向恢复损耗降低到最小,从而把开关损耗降到最小。然而,死区在这里也起作用。实际上,死区时间的减小将使得换相电流在绝大部分时间内都留过MOSFET沟道,从而减小了体二极管电流,进而减小了少数载流子电荷和Qrr。不过,较小的死区时间将会引起冲击电流。这对功率桥MOSFET来说是一个存在风险的条件,这也将降低放大器的性能。因此,设计师必须选取一个最佳的死区时间,即能够大幅减小Qrr,同时又要能够改善放大器的效率和线性度。

此外,Qrr还与D类放大器的EMI贡献有关。高恢复电流再加上电路的杂散电感和电容,将会在MOSFET中产生很大的高频电流和电压瞬变振铃。于是,将会增加EMI辐射和传导噪声。因此,为了避免这种瞬变并改善EMI性能,采用较小的和软恢复电流是至关重要的。由于较小的软反向恢复将会改善放大器的效率并降低EMI,原因是MOSFET中的开关损耗和电流-电压瞬变振铃的降低。

在为D类放大器选择合适的MOSFET时需要考虑的另一个参数是晶体管的内部栅极电阻RG(int),这是一个与温度变化有关的参数,随着温度的上升将增大。该参数影响MOSFET的通断开关时间。高RG(int)将会增加总的栅极电阻,减小栅极电流,从而增加开关时间。因此将增大MOSFET的开关损耗。此外,RG(int)的变化还会影响死区时间控制。

MOSFET封装

同等重要的还有MOSFET的封装,因为封装不仅对性能影响很大,而且还影响成本。像封装的尺寸、功耗容量、电流容量、内部电感和电阻、电气隔离和装配工艺等在确定电路的PCB板、散热器尺寸、装配工艺以及MOSFET的电气参数时都极为重要。类似地,封装热阻RθJC也会影响MOSFET的性能。简单地说,由于较低的RθJC将会减小MOSFET工作过程中的结温,从而将提供MOSFET的可靠性和性能。 [page]
由于电路的杂散电感和电容将影响放大器的EMI性能,内部封装电感将会对EMI噪声的产生起很大贡献。图5中对利用相同的MOSFET芯片但内部电感不同的两种封装的EMI噪声进行了比较。例如,将DirectFET MOSFET(<1nH)与TO-220(~12nH)

进行比较,发现前者具有更好的EMI性能。其噪声大约比TO-220低9dB,尽管其上升和下降时间比TO-220大约快3倍。于是,对于D类放大器的可靠性,效率,噪声性能及成本的改善来讲,封装的选择是非常重要的。

最后,最高结温TJ(max)也是非常关键的,因为它决定了散热器的大小。具有较高结温的MOSFET可以承受较高的功耗,因此,需要较小的散热器。从而减小了放大器的尺寸和成本。

数字音频MOSFET

综合考虑了上述各种参数,IR公司特别开发出了用于D类音频应用放大器的功率MOSFET,称作为数字音频MOSFET。为了改善其总的D类音频放大器的性能,设计中对尺寸和多个参数进行了专门优化。

如前所述,RDS(on)和Qg是决定MOSFET功耗的关键参数。这些参数与MOSFET的芯片尺寸密切相关,并在它们之间存在着一些折中。大的MOSFET尺寸意味着更低的RDS(on)和更高的Qg,反之亦然。因此,最佳的芯片尺寸将会实现更低的MOSFET功耗,如图6所示。进一步,数字音频MOSFET将保证能提供一个最大的RG(int),更低的Qrr以及一个高达150°C的TJ(max),并且能够被装配在像DirectFET这类效率最高的封装内,以便为D类音频放大器应用提供高效率、稳健性以及可靠的器件。

为了简化设计师的MOSFET的选择过程,表2中列举出了一系列为应用进行了关键参数优化的数字音频MOSFET。这些MOSFET采用了最新的工艺技术来实现最佳的参数组合。同时,DirectFET封装技术将寄生电感和电容减到最小,从而降低了EMI干扰。

表2:列举出关键参数的一系列数字音频MOSFET。


进一步,将DirectFET数字音频MOSFET(IRF6445)与合适的控制器加驱动器(IRS2092S)一道使用,就能够实现图7所示的双通道120W半桥D类音频放大器。

对上述参考设计所实测的性能显示,在1kHz处的总谐波失真加噪声(THD+N)只有大约1%左右。当驱动图8所示的4Ω阻性负载时,每个通道的效率达到了96%。其结果,功耗低于常规需求(只有连续额定功率的1/8)。于是,对于120W的D类音频放大器,在正常工作条件下无需采用散热器。此外,驻留噪声仅有170?V,电源电压为±35V。

结论

对于D类音频放大器性能的优化、尺寸和成本而言,像BVDSS、RDS(on)、Qg、Qrr、RG(int)、TJ(max)这些MOSFET参数以及封装都起着关键的作用。然而,不可能以偏概全,因为不同的功率电平需要不同的组合。因此,根据输出功率的要求,设计师必须仔细地选取合适的参数组合来实现放大器的最佳性能,并降低尺寸和成本。数字音频MOSFET中的各种参数必须被优化,才能实现最佳的D类放大器的综合性能。

关键字:D类放大器  BVDSS  MOSFET 引用地址:如何为D类放大器选取合适的参数

上一篇:数字电视及其测量浅谈
下一篇:三星网络远程播控系统解决方案

推荐阅读最新更新时间:2024-05-02 22:56

Littelfuse宣布推出采用改进型SOT-223-2L封装的 800V N沟道耗尽型MOSFET
非常适合工业、能源、电信和LED照明市场的电源应用 Littelfuse宣布推出采用改进型SOT-223-2L封装的 中国北京, 2023 年 10 月 17 日 讯 – Littelfuse公司 (NASDAQ:LFUS)是一家工业技术制造公司,致力于为可持续发展、互联互通和更安全的世界提供动力,很高兴宣布推出CPC3981Z,一种800V、100mA、45欧姆小功率N沟道耗尽型MOSFET。 耗尽型 MOSFET CPC3981Z 与标准 SOT-223 封装相比,这款新产品的 SOT-223-2L 封装去掉了中间引脚。 这将漏极与栅极之间的引脚间距从 1.386 毫米增加到超过 4
[电源管理]
Littelfuse宣布推出采用改进型SOT-223-2L封装的 800V N沟道耗尽型<font color='red'>MOSFET</font>
飞兆半导体单一P沟道PowerTrench(R) MOSFET
飞兆半导体公司(Fairchild Semiconductor) 现为手机和其它超便携应用的设计人员提供一款P沟道PowerTrench® MOSFET器件,满足其对具有出色散热性能的小尺寸电池或负载开关解决方案的需求。 FDMA905P和FDME905PT是具有低导通阻抗的MOSFET,这些器件具有出色的散热性能和小占位尺寸,也非常适合线性模式应用。 特性和优势 FDMA905P: • 采用2mm x 2mm MicroFET™ 封装,器件高度 – 最大0.8mm • 确保低RDS(ON) (MAX RDS(ON) = 16mΩ at VGS = -4.5V, ID = -10A) • 具有出色的散热性能(RΘJA
[电源管理]
用超级结MOSFET时栅极会振荡?如何解决?
因为MOSFET是单极性器件,因此寄生电容是开关瞬态唯一的限制因素。电荷平衡原理降低了特定面积的导通电阻,而且,与标准MOSFET技术相比,相同RDS(ON)下的芯片尺寸更小。图1显示超级结MOSFET和标准平面型MOSFET的电容。标准MOSFET的Coss为中度线性变化关系,而超级结MOSFET的Coss曲线呈现高度非线性关系。因为单元密度较高,超级结MOSFET的Coss初始值较高,但超级结MOSFET中,在约50V漏源电压附近,Coss会迅速下降,如图1所示。当使用超级结MOSFET应用到PFC或DC/DC转换器时,这些非线性效应可能造成电压和电流振荡。图2显示简化的PFC电路示意图,包括功率MOSFET内部寄生元件和外部
[电源管理]
用超级结<font color='red'>MOSFET</font>时栅极会振荡?如何解决?
业内:国际IDM率先将车用MOSFET、IGBT迁到12英寸产线
据业内人士透露,国际IDM正率先将将高利润的汽车MOSFET和IGBT功率模块生产从8英寸迁移至12英寸,以提高其在该领域的竞争力。 《电子时报》援引该人士称,日本东芝半导体最近宣布计划投资1,000亿日元(合8.694亿美元),扩大其12英寸汽车电源模块fab产能。英飞凌和AOS也大胆采用12英寸晶圆产能内部生产高端汽车MOSFET和IGBT功率芯片解决方案,具有高毛利率和技术门槛。 在将生产重点转向汽车电源模块的同时,IDM们也在削减用于IT应用的MOSFET的产量,导致消费级MOSFET短缺,并促使客户将订单转向中国台湾的供应商。消息人士称,后者都在加强SGT MOSFET的生产,以满足商用笔记本电脑和台式电脑的订单。 与国
[手机便携]
Diodes推出为VoIP应用优化的全新MOSFET
Diodes公司推出两款N沟道MOSFET,为网络电话 (VoIP) 通信设备的设计人员带来一种更坚固的解决方案,极大地降低了电路的复杂性和成本。 ZXMN15A27K及ZXMN20B28K经过特别设计,能满足各种VoIP应用中基于用户线接口电路(SLIC)DC/DC转换器对变压器中初级开关位置的严格要求。这些应用涵盖宽带语音系统、PBX系统、有线和DSL网关。 两款新器件的击穿电压(BVDSS)分别为150V及200V,能够承受SLIC环境下的高脉冲雪崩能量和通信模式,不需要额外的保护电路。配合正确选择的变压器,这些MOSFET就能驱动150V以上的线路电压,并以6公里以上的环路长度提供多种用户线路。
[电源管理]
功率MOSFET降压型调节器MAX8505
MAX8505 降压型调节器 工作在2.6V至5.5V输入电压范围内,产生0.8V至0.85 x VIN的可调输出电压,电流可达3A。在外加2.6V至5.5V的偏置电源时,输入电压最低可达2.25V。   MAX8505集成了 功率MOSFET ,工作于1MHz/500kHz开关频率,以提供紧凑的设计。电流模式脉宽调制(PWM)控制功能简化了采用陶瓷电容或聚合物输出电容的补偿,并提供极好的瞬态响应。   MAX8505在整个负载、输入电源和温度范围内具有1%的精确输出。通过外部电容实现可调的软启动功能。在软启动期间,电压调节回路工作。当有源器件,如微处理器或是ASIC连接到MAX8505的输出,一旦超过其低压门限时将产生
[电源管理]
英飞凌推出了全新的650V CoolMOS™ SJ功率 MOSFET CFD7A产品系列
随着产业发展,电动汽车不再只是一个流行词语,特别是新能源车补贴延至2022年,网友们纷纷直呼“真香”!电动汽车的强劲势头,反映了未来十年全球汽车行业的销量走向, 并呈现出一个明显趋势:电气化普及之势已然到来。 01 英飞凌 Show Ti me:技术、质量、生产的专业积累 为满足电动汽车市场的需求,英飞凌推出了全新的650V CoolMOS™ SJ功率 MOSFET CFD7A系列。这一产品经过专门优化,可以满足电动汽车应用 (如车载充电器、HV-LV DC-DC 转换器和辅助电源)的要求。凭借英飞凌在汽车行业积累的10余年经验,CoolMOS™ CFD7A不仅具有远超AEC-Q101标准的卓越质量,还兼具无与伦比
[汽车电子]
英飞凌推出了全新的650V CoolMOS™ SJ功率 <font color='red'>MOSFET</font> CFD7A产品系列
德州仪器推出针对服务器与DC/DC 电源系统的4A 高速MOSFET 驱动器
8引脚电源栅极驱动器以每相位40A电流在7V至8V电压范围内实现业界最高效率 2006 年 7 月 20 日,北京讯 日前,德州仪器 (TI) 宣布推出一款针对 N 通道互补驱动功率 MOSFET 的 4A 高速同步驱动器。该款 2MHz 驱动器简化了大电流单相与多相应用中的电源设计,如电压稳压器模块 (VRM) 设计、笔记本电脑、带有二次侧同步整流器的隔离式电源以及对效率要求极高的 DC/DC 转换器等。更多详情,敬请参见: www.ti.com.cn/ tps28225 。 TI 的 TPS28225 驱动器以 4.5V 至 8.8V 电压控制 MOSFET 栅极,从而实现了高效率和
[新品]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved