现代汽车电气系统设计目前正处于有史以来变化最大的时期之一。从革命性的电动机/发电机混合电推进和“电传操纵”电力传动装置到用于延长使用寿命和提高效率的智能附件(例如:无带式泵和LED照明)等等,都被一一集成到新型车辆之中。用户越来越期望拥有自动化车载诊断系统和预测性保养功能,这也促进了各种新式车体和发动机管理系统设计的出现。在许多此类系统重新设计领域中,一项重要的信息反馈就是特殊负载所使用的电流。电流测量用来分析状态是否正常,为故障保护和控制规则实施提供依据。在这一领域出现的基本变化是,智能高效的“闭环”设计正在取代过去传统的“开环”系统。
基本电流检测拓扑
尽管非接触式电流测量是可以实现,但是这种方法一般需要高成本的仪器或昂贵的电源单元产品,因此在成本和复杂性都允许的情况下才会使用这种方法。在汽车领域,低成本是关键因素,所以采用检测电阻测量方法是最适合的。串联一个小阻值的检测电阻(毫欧姆量级)到负载上,并在向负载供电时测量电阻上产生的压降,就可以准确推算出电流值。
就开关、负载和检测电阻的串联连接而言,基本上有6种不同的拓扑,如图1(a)至图1(f)所示。这些拓扑可以根据开关相对于负载的位置归类为高压端开关或低压端开关;以及根据电阻相对于电源轨的位置归类为低压端检测、“浮置”检测或高压端检测。每种方案就某些特定应用而言都有可能是最佳解决方案。另一种需要考虑的情况是出现故障时,故障视负载特性的不同而有所不同。作为一个经验法则,人们一般会假定,最可能发生的故障是与机架(电气地)相连,这或者是由扳手触碰带电的裸露端子引起,或者由外皮磨破的电线与接地的金属部件接触引起。在这种情况下,低压端检测具有与生俱来的缺点。在大多数应用中,图1(c)的配置都是优选拓扑,因为它允许把开关和监视功能集中到一起,同时还可保持较少的连线数。
现代负载与智能开关
自从功率MOSFET器件推出以来,设计师们一直将它们视作继电器的潜在替代产品。现代N-MOSFET开关的导通电阻值在一位数毫欧姆范围内,允许使用没有笨拙散热结构的标准表面贴装技术。目前已经开发出了低价集成电路解决方案,这种方案可提供自含式升压栅极驱动功能。这些电路还采用了快速故障保护机制,这样MOSFET就永远不会有出现故障的风险。凌力尔特公司的LT1910就是这样的“智能开关”控制集成电路,该器件利用低阻值高压端电流检测电阻(类似图1(c))检测电路过载,并在发生损害之前关断正在工作的MOSFET。该集成电路一检测到过载情况,就设置一个警告标记,并周期性地尝试重新启动该负载,直到故障清除为止。尽管这个集成电路本质上只是二进制,但是就用电流检测形成如图2所示的坚固“闭环”电子继电器解决方案而言,这是一个不错的实例。
实时电流监视
电流检测除了提供智能开关保护,检测电阻上的信号放大和转换后还允许数字化,并将数字化后的信号作为控制环路的“模拟”反馈信号。电流监视可以实时揭示很多负载的工作特性。例如,电动机消耗的电流与其扭矩成正比,因此可以推算出轴承摩擦阻力的变化趋势,而且无需另外的传感器就可检测各种起动器的状态。其它负载(如照明)常常是用共用的电源以并联方式驱动的,因此确定某些部分的负载是否在寿命已到时未能开路只是精确度的问题。 [page]
实现上述功能的一个特别简单的集成电路解决方案是电流检测放大器,凌力尔特公司的 LTC6102就是这种集成电路的一个实例,该器件为精确的单向高压端汽车检测而优化。图3显示了一个用LTC6102将通用电流检测输出连接到模数转换器(ADC)输入的典型电路实例。注意,LTC6102的输出是电流,因此重建负载(R2)可以放置在与该集成电路有一段距离的地方,而不会引入接地环路误差。由于该集成电路具有极高的精确度,甚至低于毫欧姆的RSENSE值也是实用的,因此热量和电压损耗最小。这个电路中增加的组件D1和R3提供电源反向瞬态保护。表1列举了一些可用检测放大器及其基本特性。
采用脉冲调制负载时需考虑的因素
就采用高频脉冲宽度调制(PWM)技术产生可变性能级别的占空比调制负载来说,在设计电流监视电路时还要考虑其它一些因素。其中主要的一点是响应时间需要足够快,以在波形的接通部分对故障情况做出响应。另一点是,开关动作不应该对电流读数保真度造成太大干扰。通常情况下,图1(c)配置再次提供了最佳结果,因为这个电路的阻抗很低,共模问题最小。在期望得到平均负载电流(直流分量)的情况下,可以使用在模拟或数字信号处理(DSP)领域使用的后置滤波来去除与PWM有关的频率分量。平均电源电流值与负载电流有关是意料之中的事,这个值为主观性效果提供了一个良好的指示,不管是灯的强度还是起动力都一样。
监视H桥驱动器的电流
一个H桥式驱动器可以看作是以互补信号工作以产生双向差分输出的一对半桥。每个半桥可以看作是图1(c)单向电路的扩展,即在图1(c)配置上增加与负载并联的低压端开关。图4显示的是用一个LTC6103组成的电路,这两个器件产生适合直接驱动ADC的差分输出。像这样的电路适用于车窗起落、环境气氛控制等机制中的电动机,而且无论在哪里,都可完成逆向动作。
注意,对于负载接地故障,低压端MOSFET不会受到过大压力,因此监视高压端的每个半桥就可提供所有需要的信息。负载电流可由两个半桥的单向电流读数差确定。另外,由于有符号数值控制,因此一个高压端开关100%接通时,准确测量负载电流无需占空比校正。
结束语
在现代汽车开发中,电子驱动功能正在猛增。经济的控制设计虽然需要坚固性,但是增加了以闭环方式监视系统中负载电流的诊断功能。无论驱动器是单端还是H桥型,高压端电流检测都是最实用的实现监视器功能的方法。LT6100系列提供了丰富的电流检测放大器选择,该系列集成电路可满足多种应用的特定需求,如组成精确度/效率、工作电压、高温工作监视解决方案以及经济实用的高压端监视解决方案。
关键字:电流检测 测量 汽车系统
引用地址:电流检测测量在汽车系统中的应用
基本电流检测拓扑
尽管非接触式电流测量是可以实现,但是这种方法一般需要高成本的仪器或昂贵的电源单元产品,因此在成本和复杂性都允许的情况下才会使用这种方法。在汽车领域,低成本是关键因素,所以采用检测电阻测量方法是最适合的。串联一个小阻值的检测电阻(毫欧姆量级)到负载上,并在向负载供电时测量电阻上产生的压降,就可以准确推算出电流值。
就开关、负载和检测电阻的串联连接而言,基本上有6种不同的拓扑,如图1(a)至图1(f)所示。这些拓扑可以根据开关相对于负载的位置归类为高压端开关或低压端开关;以及根据电阻相对于电源轨的位置归类为低压端检测、“浮置”检测或高压端检测。每种方案就某些特定应用而言都有可能是最佳解决方案。另一种需要考虑的情况是出现故障时,故障视负载特性的不同而有所不同。作为一个经验法则,人们一般会假定,最可能发生的故障是与机架(电气地)相连,这或者是由扳手触碰带电的裸露端子引起,或者由外皮磨破的电线与接地的金属部件接触引起。在这种情况下,低压端检测具有与生俱来的缺点。在大多数应用中,图1(c)的配置都是优选拓扑,因为它允许把开关和监视功能集中到一起,同时还可保持较少的连线数。
现代负载与智能开关
自从功率MOSFET器件推出以来,设计师们一直将它们视作继电器的潜在替代产品。现代N-MOSFET开关的导通电阻值在一位数毫欧姆范围内,允许使用没有笨拙散热结构的标准表面贴装技术。目前已经开发出了低价集成电路解决方案,这种方案可提供自含式升压栅极驱动功能。这些电路还采用了快速故障保护机制,这样MOSFET就永远不会有出现故障的风险。凌力尔特公司的LT1910就是这样的“智能开关”控制集成电路,该器件利用低阻值高压端电流检测电阻(类似图1(c))检测电路过载,并在发生损害之前关断正在工作的MOSFET。该集成电路一检测到过载情况,就设置一个警告标记,并周期性地尝试重新启动该负载,直到故障清除为止。尽管这个集成电路本质上只是二进制,但是就用电流检测形成如图2所示的坚固“闭环”电子继电器解决方案而言,这是一个不错的实例。
实时电流监视
电流检测除了提供智能开关保护,检测电阻上的信号放大和转换后还允许数字化,并将数字化后的信号作为控制环路的“模拟”反馈信号。电流监视可以实时揭示很多负载的工作特性。例如,电动机消耗的电流与其扭矩成正比,因此可以推算出轴承摩擦阻力的变化趋势,而且无需另外的传感器就可检测各种起动器的状态。其它负载(如照明)常常是用共用的电源以并联方式驱动的,因此确定某些部分的负载是否在寿命已到时未能开路只是精确度的问题。 [page]
实现上述功能的一个特别简单的集成电路解决方案是电流检测放大器,凌力尔特公司的 LTC6102就是这种集成电路的一个实例,该器件为精确的单向高压端汽车检测而优化。图3显示了一个用LTC6102将通用电流检测输出连接到模数转换器(ADC)输入的典型电路实例。注意,LTC6102的输出是电流,因此重建负载(R2)可以放置在与该集成电路有一段距离的地方,而不会引入接地环路误差。由于该集成电路具有极高的精确度,甚至低于毫欧姆的RSENSE值也是实用的,因此热量和电压损耗最小。这个电路中增加的组件D1和R3提供电源反向瞬态保护。表1列举了一些可用检测放大器及其基本特性。
采用脉冲调制负载时需考虑的因素
就采用高频脉冲宽度调制(PWM)技术产生可变性能级别的占空比调制负载来说,在设计电流监视电路时还要考虑其它一些因素。其中主要的一点是响应时间需要足够快,以在波形的接通部分对故障情况做出响应。另一点是,开关动作不应该对电流读数保真度造成太大干扰。通常情况下,图1(c)配置再次提供了最佳结果,因为这个电路的阻抗很低,共模问题最小。在期望得到平均负载电流(直流分量)的情况下,可以使用在模拟或数字信号处理(DSP)领域使用的后置滤波来去除与PWM有关的频率分量。平均电源电流值与负载电流有关是意料之中的事,这个值为主观性效果提供了一个良好的指示,不管是灯的强度还是起动力都一样。
监视H桥驱动器的电流
一个H桥式驱动器可以看作是以互补信号工作以产生双向差分输出的一对半桥。每个半桥可以看作是图1(c)单向电路的扩展,即在图1(c)配置上增加与负载并联的低压端开关。图4显示的是用一个LTC6103组成的电路,这两个器件产生适合直接驱动ADC的差分输出。像这样的电路适用于车窗起落、环境气氛控制等机制中的电动机,而且无论在哪里,都可完成逆向动作。
注意,对于负载接地故障,低压端MOSFET不会受到过大压力,因此监视高压端的每个半桥就可提供所有需要的信息。负载电流可由两个半桥的单向电流读数差确定。另外,由于有符号数值控制,因此一个高压端开关100%接通时,准确测量负载电流无需占空比校正。
结束语
在现代汽车开发中,电子驱动功能正在猛增。经济的控制设计虽然需要坚固性,但是增加了以闭环方式监视系统中负载电流的诊断功能。无论驱动器是单端还是H桥型,高压端电流检测都是最实用的实现监视器功能的方法。LT6100系列提供了丰富的电流检测放大器选择,该系列集成电路可满足多种应用的特定需求,如组成精确度/效率、工作电压、高温工作监视解决方案以及经济实用的高压端监视解决方案。
上一篇:汽车影音系统的图像处理器的应用
下一篇:安森美汽车电子:照明、动力还是图像传感器,做就要到极
推荐阅读最新更新时间:2024-05-02 23:32
基于单片机技术的脉搏测量仪设计
0 引言 脉搏测试仪是用来测量一个人脉搏跳动次数的电子仪器,也是心电图的主要组成部分,因此,在现代医学上具有重要的作用。目前检测脉搏的仪器虽然很多,但是能实现精确测量、精确显示且计时功能准确等多种功能的便携式全数字脉搏测量装置很少。随着人们生活环境 和经济条件的改善,以及文化素质的提高,其生活方式,保健需求以及疾病种类、治疗措施等发生了明显的变化。但在目前,我国的心脑血管疾病仍呈逐年上升趋势。其发病率和死亡率均居各种疾病之首,是人类死亡的主要原因之一。因此,认识、预防及早期发现这些疾病是十分必要的。 从脉搏波中提取人体的生理病理信息作为临床诊断和治疗的依据,历来都受到中外医学界的重视。几乎世界上所有的民族都用过“
[医疗电子]
基于光电传感器的金属杨氏模量的测量
0 引言 金属材料杨氏模量的测量是综合大学和工科院校物理实验中必做的实验之一。金属丝杨氏弹性模量测量的关键在于对金属丝的微小长度量的精确测量,国内一些院校的实验室仍采用的是光杠杆法测量金属丝的微小长度变量,而这种测量方法对于光路的调整有着严格的要求,测量难度大且不易掌握,操作比较繁琐,且读数过程中容易出错,耗时较长。而应国内大学物理实验的发展现状及发展要求,应用高科技不断改善物理实验设备,实现实验设备的自动化检测及控制成为主要趋势,因而我们需要另辟新的测量方法来改进实验仪器。 1 系统总体设计 我们首先用测量杨氏模量的装置产生微小位移,再用均匀光束照在硅光电池上,用与金属丝相连的挡板放在光源与硅光电池之间进行挡光,如图
[测试测量]
基于语音识别的汽车空调控制系统
引言 现在汽车上使用的电器越来越多,驾驶员需要手动操作的电器开关也越来越多,不但增加了驾驶员的负担,还影响了行车安全。本文以STM32F103VET6(以下简称STM32)芯片为控制核心,采用高性能LD3320语音识别芯片,设计基于语音识别的汽车空调控制系统。该系统可以用语音有效控制汽车空调,减轻了驾驶员的操作负担,保证行车过程中的安全。 1 系统硬件设计 运用语音识别技术,结合各种传感器对车身内外的环境(如气温、阳光强度等)以及制冷压缩机的状态等多种参数进行实时检测,与设定参数相比较,微控制器经过运算处理做出判断,输出相应的调节和控制信号。执行机构经过实时调整和修正,实现对车厢内空气环境全方位、多功能的调节和控制。系统
[单片机]
电源纹波的产生、测量和抑制
引 言 对于电1 子产品来说唯一不可缺少的是电源,但是它除了提供能量外,也带来了纹波、噪声等影响电子产品正常工作的影响。纹波电压对高放、本振、混频、滤波、检波、A/D变换等电路都会产生影响,在设计控制设备、电子仪器、电视、摄像机等电子产品时都要想办法尽量减小纹波。为此就要了解纹波、知道它是如何产生的、如何测量以及抑制方法。 2 电源纹波纹波是附着于直流电平之上的包含周期性与随机性成分的杂波信号,指在额定输出电压、电流的情况下,输出电压中的交流电压的峰值。狭义上的纹波电压,是指输出直流电压中含有的工频交流成分。 纹波用示波器可以看到,在直流电压上下轻微波动,就像水平面上波动的水纹一样,所以被称为纹波(见图1)。 图1 R
[测试测量]
理想汽车将正式推送导航辅助驾驶系统
小鹏和蔚来,后二者分别有NGP和NOP智能驾驶辅助系统,理想如今却还没有专属于自己的智能辅助驾驶系统,只能使用行业内普遍采用的L2级辅助驾驶功能。 不过而今,理想汽车也将迎来自己的“导航辅助驾驶”系统。 日前,理想汽车发布信息表示,理想ONE OTA 3.0即将正式推送,同时提供“导航辅助驾驶”系统。 不过此前,因为导航驾驶系统没能按时推送,也引起了不少车主的不满。 2021款理想ONE在上市时,理想CEO李想表示,NOA系统将会在9月份上市。 但至今,理想汽车的NOA导航辅助系统还没有推送。有车主表示,当初李想承诺的9月份上线NOA智能辅助系统,也是吸引他购买的一个卖点。但如今已经10月份了,还是没有等来通知
[汽车电子]
示波器参数测量究竟是如何保证精度的?
本文导读 “参数测量”是示波器分析波形的一大利器,工程师不用开启光标就可以轻松得到各项参数。但也有工程师会有点不放心:示波器如何保证测量精度呢?本文就带你步步深入,了解示波器参数测量背后的算法。 ZDS系列示波器提供了非常丰富的测量功能,测量项目最多可达51种。工程师在使用时遇到的问题多是因为对细节及原理了解不够,下面就这些内容,带你一步一步深入挖掘,解开你的疑惑。 一、参数测量的使用方法 打开测量比较简单,记住两个要点: 1、我要测量哪个通道? 2、我要测什么? 图1 打开测量 小结:测量项目有51项之多,支持24项测量项目同屏幕显示。 二、参数测量算法分析 示波器中测量的项目大体上可分为两大类,一类与电压相关,如最
[测试测量]
通用汽车智能启停系统专利 结合GPS/机器学习决定是否/何时激活
据外媒报道,如果你拥有一辆大约过去五年间生产的汽车,而且该车还配备了自动变速箱,该车大概率也配备了一个启停系统( stop/start system )。不过,该系统也非常烦人,很多驾驶员都抱怨该系统会在每个红绿灯前切断动力,让乘客烦躁不已。 (图片来源:通用汽车) 不过,在通用汽车(GM)近日向美国专利商标局(U.S. Patent and Trademark Office)提交的一份专利中,巧妙地解决了人们对该系统的抱怨。通用汽车的启停系统将利用定位设备和摄像头,分析车辆周围的环境,以确定是否该系统应该被激活。 启停系统是一项聪明的省油服务,从名字中可以推断是启动和关闭发动机。当发动机达到合适的温度时,与车辆在红
[汽车电子]
基于自动调焦显微视觉的MEMS运动测量技术
摘 要: 为了对徽机电系统(MEMS)的机械动态性能进行测试,结台自动调焦、机器显徽视觉和频闪照明成像等多项技术,设计了基于自动调焦显微视觉的MEMS动态测试系统,可进行MEMS平面运动和离面运动的测量。该文介绍了系统的设计组成和关键技术,并针对系统做了验证性实验。实验结果表明,平面亚像素位移算法的匹配精度可达l/50个像素,在系统25倍的放大倍率下,平面刚体运动测量分辨率达到7.2 nm8.3 nm;自动调焦过程迅速,焦平面定位精确,离面运动测量分辨率达到0.1μm。 关键词: 微机电系统(MEMS);显微视觉;自动调焦;频闪成像;亚像素算法 随着微电机系统(MEMS)技术的迅速发展,对MEMS器件性能的研究
[安防电子]