构建更加智能的电能计量系统

发布者:TranquilSoul最新更新时间:2015-06-26 来源: eepw关键字:电能计量系统  RS-485  通信规范 手机看文章 扫描二维码
随时随地手机看文章
具备双向通信功能的高级电表架构(AMI)被视为智能电网的核心基础。分析数据表明,未来5年,随着智能电网部署的增长,智能电表在全球安装的数量将高达2亿块。 

在中国,与智能电网相关的经济刺激计划正在实施过程中,预计在未来3至5年内将部署1.7亿块智能电表。与传统的机械式电表不同,智能电表可以根据每天的时段来确定用电量,并且能够监测出每个地方的用电量。 

目前自动抄表技术在电表应用中越来越流行,该技术为电表提供通信端口读取数据,而且大部分情况下采用远程读数方式。实现该技术的关键是确保通信链路安全可靠,RS-485是一种简单、廉价而且可靠的通信规范,可理想用于自动抄表系统。本文讨论Maxim RS-485收发器的各种特性,这些特性使RS-485收发器成为电子式电能表的理想选择。 

 
图1. 采用RS-485端口的电表结构图

图1所示为采用RS-485端口的电表结构图,通过光耦合器和变压器,端口与MCU和模拟前端之间实现了电气隔离。隔离功能可有效保护电路不受RS-485传输线上浪涌电流的损害。电缆断开时,A、B线的上拉和下拉电阻决定接收器的状态。使用这些电阻能够在电缆断开时使接收器输出一直保持高电平,由此带来很多益处。图1系统中,IrDA电路有一个开漏输出,电缆断开时,如果RS-485收发器错误的将线路拉低,光耦合器输出晶体管将会接通,使总线保持低电平,禁止开漏IrDA模块和MCU之间的任何通信连接。电缆断开时产生一个高电平输出,系统可以在同一UART总线上使用其它开漏输出器件。 

当RS-485总线与电力线(例如,220VAC)短路时,PTC和TVS可提供差模过压保护。反激变压器的附加绕组为隔离电路供电,图1中,反激转换器有两路输出:第一路为MCU和模拟前端供电;第二路进行电气隔离,为RS-485端口供电。如果上述反激电源配合后备电池使用,MCU的供电电源(图中的VCC)实际经过了"二极管或操作"。这意味着电池供电时,不存在隔离的isolated_VCC。因此,RS-485电路没有"接通",所以电表在断电期间不能进行通信,也无法通知已经停电。

以下列出了Maxim RS-485收发器的特性,这些特性可以帮助提高并简化电表中RS-485端口的设计。关于支持这些特性的所有器件的详细信息,请参考MAX3070E (3.3V)或MAX13085E (5V)数据资料。 

失效保护 RS-485标准定义信号阈值的上下限为±200mV,但没有规定电平范围。在以下三种情况下,这会带来一定的问题: 

1. 总线上的所有收发器都没有工作,因此出现了高阻态。这意味着总线上的终端电阻导致接收器输入之间的差分电压是0V。 

2. RS-485总线出现短路,线路之间的电压也会出现0V。 

3. 出现开路或没有连接电表时,差分电压也是0V,这是因为收发器本身在输入之间具有高阻,迫使出现0V。 

上述三种情况下,差分电压均为0V,然而,RS-485规范定义0V是不确定电压。这意味着接收器输出可以是高电平,也可以是低电平,甚至在高电平和低电平之间振荡。Maxim的失效保护接收器规定接收器阈值在-50mV和-200mV之间,从而解决了这一问题。这要比RS-485规定的阈值严格一些,因此也符合该规范。利用这一优势将0V差分电压定义为已知状态,避免了上述三种情况带来的问题。这样,电表硬件工程师可以不必采用图1所示的两个偏置电阻。 

摆率限制 由于大部分电表的数据速率在1kbps和19.2kbps之间,没有必要采用很快的边沿速率,因为这样只会带来不必要的辐射。通过控制RS-485收发器驱动电路的边沿速率,可以降低高频辐射。较低摆率还降低了不恰当的终端匹配和接头产生的误码(参见图2和图3)。[page]

 
图2. MAX3485E/MAX3490E/MAX3491E传输125kHz信号时驱动电路的输出波形和FFT曲线

MAX3485E/MAX3490E/MAX3491E没有摆率限制,能够支持更高的数据速率。然而,较高数据速率要求较快的边沿速率,因而产生较大的高频谐波。这些谐波增加了EMI辐射,也限制了系统对不恰当的终端匹配的承受能力。MAX3483E和MAX3488E对摆率加以限制,因此,最大数据速率降至250kbps甚至更低,这对于电表应用已经足够了。摆率的降低也限制了高频谐波,不但减小了EMI,而且解决了不恰当的终端匹配所带来的问题。

 
图3. MAX3483E/MAX3488E传输125kHz信号时驱动电路的输出波形和FFT曲线

热插拔 在多点系统中,例如RS-485,保证只有一个发送器工作非常关键。如果两个或多个发送器处于工作状态,将会出现总线竞争,导致误码。通过软件可以部分解决总线通信中的误码问题,但是硬件工程师应首先避免出现这些误码。Maxim的热插拔特性解决了总线竞争时出现的两种常见问题: 

1. 收发器在已经工作的总线上首次上电。 
2. 在已经工作的系统中带电插入收发器卡。 

这两种情况下,驱动RS-485收发器的微控制器(μC)将重新复位。大量μC使其I/O口进入三态。一旦软件开始运行,微处理器引脚将最终配置为合适的状态。但在初始上电与引脚正确配置完成之间会出现问题,主要问题是,RS-485收发器的发送使能(DE)引脚将"看到"一个逻辑高电平。出现这一问题是由于噪声或漏电流将三态引脚上拉至高电平。Maxim的热插拔电路通过两个步骤解决这一问题。在第一个10μs期间,RS-485收发器上电,通过5kΩ电阻的600μA强下拉电流将DE引脚拉低,强下拉电流使DE引脚的所有电容放电。10μs后,采用100μA下拉电流保持逻辑低电平不受漏电流和噪声的影响。在外部电源将DE引脚拉高之前,100μA的下拉电流将一直保持有效。一旦引脚出现高电平,关闭100μA电流源,RS-485收发器正常工作(参见图4)。这一特性确保RS-485收发器的发送器为三态,避免总线竞争。

 
图4. Maxim DE引脚的热插拔电路简化框图

增强ESD保护 ESD是所有半导体器件普遍存在的问题,RS-485收发器也不例外。Maxim产品采用符号"E"表示器件具有增强的ESD保护,MAX3070E和MAX13085E能够承受±15kV的人体模式(HBM)静电冲击。 

隔离 MAX3535是单片隔离型、3.3V或5V供电RS-485收发器。包括容性隔离,集成了RS-485收发器,内部H桥接驱动电路配合外部商用化变压器,在16引脚SO封装内实现了单片隔离的RS-485方案。由于不必在反激电源中采用额外绕组,也不必采用光耦合器,因此大大降低了设计难度。另外,由于MAX3535是自供电,当电表采用电池供电时,RS-485端口也能正常工作。MAX3535E还提供热插拔、失效保护、ESD保护以及摆率限制等功能(图5)。

 
图5. MAX3535E的典型应用电路

早在多年以前电表就已投入批量使用,而自动抄表则是后续增加的功能。Maxim的RS-485收发器有助于降低电表成本,提高可靠性,简化设计,实现电表的小型化。
关键字:电能计量系统  RS-485  通信规范 引用地址:构建更加智能的电能计量系统

上一篇:EMC COMPLIANT RS-485收发器保护电路解析
下一篇:信号链基础知识之设计用RS-485的2-4线转换器

推荐阅读最新更新时间:2024-05-02 23:45

如何快速解决RSM隔离模块应用问题
RS-485总线优点众所皆知,并且为保证通信的稳定性,都会使用隔离RS-485模块进行信号隔离。但在RS-485实际组网时,或多或少会遇到不能通信、通信出错、RS-485收发器损坏等情况,其中究竟为何?本文将深度剖析RS-485组网问题。 1、应用问题; 当出现通信错误或者不能通信时首先判断应用是否符合表 1中的应用情况。 表 1 RS-485总线应用情况 表 1中三种应用情况分别属于终端电阻、上下拉电阻、控制脚以及逻辑输入侧电平的问题,下面对其进行详细分析。 1)终端电阻问题 若RS-485总线上接有终端电阻,且所用RS-485收发器门限电平是±200mV,则可能出现表 2中所述的异常现象。 表 2
[嵌入式]
如何快速解决RSM隔离模块应用问题
Maxim推出PROFIBUS-DP/RS-485收发器
    Maxim推出PROFIBUS-DP?/RS-485收发器MAX14770E。该器件采用Maxim的下一代BiCMOS工艺,能够实现较快的(20Mbps)数据传输速度,并且在小尺寸TDFN封装中集成了极为可靠的(±35kV,HBM) ESD保护架构。此外,器件工作在-40°C至+125°C汽车级温度范围,能够保证在恶劣环境中可靠地工作。MAX14770E作为MAX3469的引脚兼容升级产品,可理想用于工业马达控制系统、PROFIBUS-DP/RS-485网络及现场总线等应用。     MAX14770E具有业内最宽的电源容差范围(+5V ±10%),提供了极大的灵活性。器件提供小尺寸(3mm x 3mm)、汽车级
[工业控制]
基于RS-485协议设计智能数据采集网络仪表
一、引言 在由以单片机为核心构成的仪器仪表、智能设备等诸多数据采集系统中,往往需要实现计算机与单片机之间的数据交换,这也就是单片机与计算机之间的通信,以此来充分发挥单片机与计算机各自的长处,提升整个应用系统性能及性价比。传统的基于RS-232协议的通信由于传输距离短、速度慢、信号易受干扰等不足,使得其应用局限性日益突出。有鉴于此,作者在文中讨论了如何基于RS-485通信协议,构建RS-485通信网络,实现若干单片机与计算机之间远程通信。 二、硬件设计 1.RS-485通信简介 RS-485是EIA(美国电子工业协会)制定的平衡发送、平衡接收的标准异步串行总线,它具有传输距离远、灵敏度高、多点通信能力强等优点。R
[单片机]
基于<font color='red'>RS-485</font>协议设计智能数据采集网络仪表
变频器和plc组成的rs-485通信连接方案
bh485g隔离器是真正具有数据流向自动切换、数据完全透明传输、无延时的隔离器, 波特率为0~250kbit/s自适应,供电电源有dc5v和dc24v两种供选择(一般 变频器 上均有 dc24v电源输出端子)而且bh-485g具有两对rs485接线端子,避免了会使波形畸变的 总线分支问题,接线非常方便。 bh-485g带有数据收发指示灯,加装了 bh485g隔离器后的变频器和plc组成的 rs-485通信网络如图6-24所示。 设置时须将总线两端的bh-485g上的终端电阻设置开关k拨到“r”(接入1200终端电 阻),其他位置的开关拨到“off”(不接终端电阻如通信距离超过21cm (9 600bit/s时), 可在总线中增加
[嵌入式]
RS-485网络配置
1、网络节点数   网络节点数与所选RS-485芯片驱动能力和接收器的输入阻抗有关,如75LBC184标称最大值为64点,SP485R 标称最大值为400点。实际使用时,因线缆长度、线径、网络分布、传输速率不同,实际节点数均达不到理论 值。例如75LBC184运用在500m分布的RS-485网络上节点数超过50或速率大于9.6kb/s时,工作可靠性明显下降。 通常推荐节点数按RS-485芯片最大值的70%选取,传输速率在1200~9600b/s之间选取。通信距离1km以内,从通 信效率、节点数、通信距离等综合考虑选用4800b/s最佳。通信距离1km以上时,应考虑通过增加中继模块或降 低速率的方法提高数据传输可靠性。 2、节点与主干
[嵌入式]
基于PIC18单片机的RS-485/CAN智能转换器的设计策
RS-485是一个电气接口规范,它定义了一个基于单对平衡线的多点、双向(半双工)通信链路,只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,在此基础上用户可以建立自己的高层通信协议,在当时看来是一种相对经济具有相当高噪声抑制相对高的传输速率传输距离远和宽共模范围的通信平台,因此基于RS-485总线的通讯方法得到了广泛的应用。 由于RS-485总线本身存在的许多局限性,随着科技的发展RS-485的总线效率低,系统的实时性差、通讯的可靠性低、后期维护成本高、网络工程调试复杂、传输距离不理想、单总线可挂接的节点少、应用不灵活等缺点慢慢的暴露出来。虽历经多次改进但均是治标不治本。 CAN-bus是一种多主方式的串行通
[单片机]
基于PIC18单片机的<font color='red'>RS-485</font>/CAN智能转换器的设计策
RS-485系统的常见故障及处理方法
  RS-485是一种低成本、易操作的通信系统,但是稳定性弱同时相互牵制性强,通常有一个节点出现故障会导致系统整体或局部的瘫痪,而且又难以判断。下面介绍一些维护RS-485的常用方法。   1)若出现系统完全瘫痪,大多因为某节点芯片的VA、VB对电源击穿,使用万用表测VA、VB间差模电压为零,而对地的共模电压大于3V,此时可通过测共模电压大小来排查,共模电压越大说明离故障点越近,反之越远;   2)总线连续几个节点不能正常工作。一般是由其中的一个节点故障导致的。一个节点故障会导致邻近的2~3个节点(一般为后续)无法通信,因此将其逐一与总线脱离,如某节点脱离后总线能恢复正常,说明该节点故障;   3)集中供电的RS-485系统在上电时
[嵌入式]
单片机RS-485多机通讯的实现
1 简介   RS-485串行总线接口标准以差分平衡方式传输信号,具有很强的抗共模干扰的能力,允许一对双绞线上一个发送器驱动多个负载设备。工业现场控制系统中一般都采用该总线标准进行数据传输,而且一般采用RS-485串行总线接口标准的系统都使用8044芯片作为通信控制器或各分机的CPU。8044芯片内部集成了SDLC,HDLC等通信协议,并且集成了相应的硬件电路,通过硬件电路和标准协议的配合,使系统的通讯准确、可靠、快速。8044在市场上日渐稀少,虽然有8344可替代,但几百元的价位与普通单片机几元至几十元的价位相差甚远,用户在开发一般的单片机应用系统时,都希望能用简单的电路和简单的通信协议完成数据交换。譬如:利用单片机本身所提供的
[单片机]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved