无人机飞控技术:我这一辈子

发布者:平安心境最新更新时间:2018-09-10 来源: eefocus关键字:传感器  飞行器  CPU  飞控 手机看文章 扫描二维码
随时随地手机看文章

10年前,无人机行业考虑的是如何让飞机稳定飞起来、飞得更快、飞得更高。无人机的应用也主要是在军事等神秘领域。如今,随着芯片、人工智能、大数据技术的发展,无人机开始向智能化、终端化、集群化的趋势发展。

 

几年的时间让无人机从远离人们视野的军事应用飞入了寻常百姓家,更多的小白用户开始接触到无人机,只需要通过短暂的学习,也可以进行稳定安全的操作,体验了一把飞行和航拍的乐趣~不可否认,飞控技术的发展是这十年无人机变化的最大推手。但是,你真的了解飞控是什么吗?下面小曼为你仔细解读多轴飞行器的飞控是如何运行的。

 

 

 

飞控是什么?飞行控制系统(Flight control system)简称飞控,可以看作飞行器的大脑。多轴飞行器的飞行、悬停,姿态变化等等都是由多种传感器将飞行器本身的姿态数据传回飞控,再由飞控通过运算和判断下达指令,由执行机构完成动作和飞行姿态调整。

 

 

飞控可以理解成无人机的CPU系统,是无人机的核心部件,其功能主要是发送各种指令,并且处理各部件传回的数据。类似于人体的大脑,对身体各个部位发送指令,并且接收各部件传回的信息,运算后发出新的指令。例如,大脑指挥手去拿一杯水,手触碰到杯壁后,因为水太烫而缩回,并且将此信息传回给大脑,大脑会根据实际情况重新发送新的指令。飞控的主要组成部分

 

 

 

 

 

无人机飞控一般包括传感器、机载计算机和伺服作动设备三大部分,实现的功能主要有无人机姿态稳定和控制、无人机任务设备管理和应急控制三大类。传感器

 

 

多轴无人机机身大量装配的各种传感器,包括GPS、气压计、陀螺仪、指南针以及地磁感应等,可以采集角速率、姿态、位置、加速度、高度和空速等,是飞控系统的基础。机载计算机

 

 

机载计算机作为无人机的CPU,是飞控的中枢系统,类似于人体大脑的中枢神经,负责整个无人机姿态的运算和判断;同时,也操控着传感器和伺服作动设备。伺服作动设备

 

 

无人机执行机构都是伺服作动设备,是导航飞控系统的重要组成部分。其主要功能是根据飞控计算机的指令,按规定执行动作。对于固定翼无人机来说,主要通过调整机翼角度和发动机运转速度,实现对无人机的飞行控制。

 

多轴无人机的执行机构包括螺旋桨、电调和电机。多轴无人机飞控通过电调传输到螺旋桨的控制信号,来控制电机,带动螺旋桨转动,最终实现无人机的悬停、升降、前进等飞行状态的调整。

 

 

无人机朝红色箭头方向前进时,四个螺旋桨的旋转方向。你可能会发现对角线上的一对螺旋桨(M1和M3)方向一致,相邻螺旋桨旋转方向相反。关于螺旋桨的飞行原理,小曼在后面的文章中会单独介绍。飞控的种类目前飞控的主要种类有两种“开源飞控”、“自研飞控”。接触过无人机行业的人都知道,如何使飞控更加安全,更易操控是无人机研发的大难点!控。

 

 

 

每个飞控系统都可能成为未来的信息终端目前这个阶段有点像 80 年代的人们使用大哥大,当个宝贝一样但却没有发挥其很大的作用;而现在的手机已经终端化,仅仅是遍布全球的终端,人们从终端获取全球有益信息的同时也在贡献着自身的价值。

 

 

 

 

 

 

 

 

 

 

 

 

GPS如何定位水平位置和垂直高度?

GPS定位,实际上就是通过四颗已知位置的卫星来确定GPS接收器的位置。如上图所示,图中的GPS接收器为当前要确定位置的设备,卫星1、2、3、4为本次定位要用到的四颗卫星:

 

Position1、Position2、Position3、Position4分别为四颗卫星的当前位置(空间坐标),已知d1、d2、d3、d4分别为四颗卫星到要定位的GPS接收器的距离

 

1.无人机GPS模块位置信息从哪里来?

 

实际上,运行于宇宙空间的GPS卫星,每一个都在时刻不停地通过卫星信号向全世界广播自己的当前位置坐标信息。任何一个无人机GPS模块都可以通过天线很轻松地接收到这些信息,并且能够读懂这些信息(这其实也是每一个GPS芯片的核心功能之一)。这就是这些位置信息的来源。

 

2.无人机GPS模块距离信息从哪里来?

 

我们已经知道每一个GPS卫星都在不辞辛劳地广播自己的位置,那么在发送位置信息的同时,也会附加上该数据包发出时的时间戳。无人机GPS模块收到数据包后,用当前时间(当前时间当然只能由无人机GPS模块自己来确定了)减去时间戳上的时间,就是数据包在空中传输所用的时间了。

 

知道了数据包在空中的传输时间,那么乘上他的传输速度,就是数据包在空中传输的距离,也就是该卫星到GPS接收器的距离了。数据包是通过无线电波传送的,那么理想速度就是光速c,把传播时间记为Ti的话,用公式表示就是:di=c*Ti(i=1,2,3,4);这就是di(i=1,2,3,4)的来源了。

 

3、无人机GPS模块为什么需要4颗卫星

 

从理论上来说,以地面点的三维坐标(N,E,H)为待定参数,确实只需要测出3颗卫星到地面点的距离就可以确定该点的三维坐标了。但是,卫地距离是通过信号的传播时间差Δt乘以信号的传播速度v而得到的。其中,信号的传播速度v接近于真空中的光速,量值非常大。因此,这就要求对时间差Δt进行非常准确的测定,如果稍有偏差,那么测得的卫地距离就会谬以千里。而时间差Δt是通过将卫星处测得的信号发射时间tS与接收机处测得的信号达到的时间tR求差得到的。其中,卫星上安置的原子钟,稳定度很高,我们认为这种钟的时间与GPS时吻合;接收机处的时钟是石英钟,稳定度一般,我们认为它的时钟时间与GPS时存在时间同步误差,并将这种误差作为一个待定参数。这样,对于每个地面点实际上需要求解就有4个待定参数,因此至少需要观测4颗卫星至地面点的卫地距离数据。

 

未来无人机在各类应用中更像是布撒的一系列终端设备,飞控作为无人机的核心会在终端化过程中扮演重要作用,无论在消费、农业、巡视等各领域,飞控将成为数据终端的核心,大量的飞行状态、任务数据、载荷状态会被记录、回传、分发,用户或其他利益相关方会通过付费等商业模式获取终端的有用信息。

 

 

 

 

 

 

 

 

 

超声测距

通过超声波发射装置发出超声波,根据接收器接到超声波时的时间差就可以知道距离了。这与雷达测距原理相似。 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。(超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2)

 

超声波指向性强,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物 位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移 动机器人的研制上也得到了广泛的应用。

 

为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。

 

为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一 类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生 的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。

 

 

光流的概念是Gibson在1950年首先提出来的。它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。一般而言,光流是由于场景中前景目标本身的移动、相机的运动,或者两者的共同运动所产生的。

 

当人的眼睛观察运动物体时,物体的景象在人眼的视网膜上形成一系列连续变化的图像,这一系列连续变化的信息不断“流过”视网膜(即图像平面),好像一种光的“流”,故称之为光流(optical flow)。光流表达了图像的变化,由于它包含了目标运动的信息,因此可被观察者用来确定目标的运动情况。

 

研究光流场的目的就是为了从图片序列中近似得到不能直接得到的运动场。运动场,其实就是物体在三维真实世界中的运动;光流场,是运动场在二维图像平面上(人的眼睛或者摄像头)的投影。

 

那通俗的讲就是通过一个图片序列,把每张图像中每个像素的运动速度和运动方向找出来就是光流场。那怎么找呢?咱们直观理解肯定是:第t帧的时候A点的位置是(x1, y1),那么我们在第t+1帧的时候再找到A点,假如它的位置是(x2,y2),那么我们就可以确定A点的运动了:(ux, vy) = (x2, y2) - (x1,y1)。

那怎么知道第t+1帧的时候A点的位置呢? 这就存在很多的光流计算方法了。

 

1981年,Horn和Schunck创造性地将二维速度场与灰度相联系,引入光流约束方程,得到光流计算的基本算法。人们基于不同的理论基础提出各种光流计算方法,算法性能各有不同。Barron等人对多种光流计算技术进行了总结,按照理论基础与数学方法的区别把它们分成四种:基于梯度的方法、基于匹配的方法、基于能量的方法、基于相位的方法。近年来神经动力学方法也颇受学者重视。

 

 

飞控通信网络化随着智能手机增长率的放缓以及无人机终端化的趋势,移动运营商们也敏锐捕捉到了商机,纷纷推出了面向无人机应用的移动通信解决方案。这类方案目前采用成熟商用 2G、3G、4G 网络,通过定义套餐、开发贴片 SIM 卡组件、天线定制等方式,使无人机作为终端接入商用网络。

 

虽然还存在网络不稳定、覆盖区域不全等因素,但随着无人机数据价值的增加、移动通信技术的高速发展驱动以及无人机管控压力的增大,在不久的将来借助运营商的飞控网络化趋势不可阻挡。形成无人机+大数据在大数据时代,没有人否认原始数据的重要性。

 

 

 


关键字:传感器  飞行器  CPU  飞控 引用地址:无人机飞控技术:我这一辈子

上一篇:Silicon Line通过Capital-E领投的B轮融资筹集950万美元资金
下一篇:中国企业侵权诉讼闹上美国法庭?大疆惹了谁

推荐阅读最新更新时间:2024-05-03 03:16

TQ2440开发板学习纪实(3)--- 设置时钟频率,让CPU运行的更快
0 原理 0.1 时钟源自哪里 所谓的时钟,就是电压高低的变化,只有不断的0,1交替变化,CPU才能被驱动运行。S3C2440支持多种时钟源,这通过CPU针脚OM3和OM3来选择。对于QT2440板子来说,OM3和OM2均直接接地,这就意味着时钟源来自针脚XTIpll和XTOpll,这两个针脚在TQ2440的核心板上被连接上了一个12MHz的晶振。 0.2 S3C2440的时钟原理与设置 CPU、RAM、UART等不同的设备运行时需要不同的时钟频率,这些不同的频率需要通过变频电路来提供,在电子行业这个变频电路叫做PLL(Phase Locked Loop)。作为软件出身的程序员,不太可能精通电路设计,只需要知道这个PLL可以把
[单片机]
新一代可穿戴设备设计中的明星传感器
中国可穿戴设备市场从2012年开始起步,近年来一直保持着较高的增长速度,据市场调研公司IDC的数据显示,2016年中国可穿戴设备市场增长幅度达到52.9%,远高于全球32.8%的增长率,预计2017年中国可穿戴设备出货量将达到8,300万个。目前可穿戴设备开发商正积极朝向“运动”、“健康”的应用功能设计做优化,从而赋予产品更多的价值。 在新的设计趋势驱动下,开发商开始采用更多元的传感器,对性能规格的要求也更加严格,现在就请看看当前可穿戴设备设计中最红火的几类传感器吧! 可穿戴设备已经从简单的计步功能,发展成融合环境与健康数据,可为用户提供更多有用的信息的产品,例如室外的紫外线强度,或室内的温湿度、空气质量等,以及用户的心率、血
[安防电子]
光电传感器供应商富吉瑞登陆科创板
10月18日,富吉瑞在上海证券交易所科创板上市,公司证券代码为688272,发行价格22.56元/股,发行市盈率为20.18倍。截至发稿,富吉瑞报价42.19元/股,涨幅87.01%,总市值达32.06亿元。 招股书披露,富吉瑞成立于2011年1月20日,是一家主要从事红外热成像产品和系统的研发、生产和销售,并为客户提供系统解决方案的高新技术企业。其注册资本为5700万元,实控人为黄富元,合计控制84.86%的表决权。 2017年至2020年上半年,富吉瑞营业收入分别为0.76亿元、0.88亿元、1.65亿元、2.16亿元;净利润分别为-2211.63万元、63.91万元、1384.31万元、4200.65万元。 富吉瑞主要立
[手机便携]
FPGA与DSl8820型温度传感器通信的实现
      l 引言    DS18B20是DALLAS公司生产的一线式数字温度传感器,采用3引脚T0-92型小体积封装;温度测量范围为-55℃~+125~C,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出。   一线式(1-WIRE)串行总线是利用1条信号线就可以与总线上若干器件进行通信。具体应用中可以利用微处理器的I/O端口对DS18B20直接进行通信,也可以通过现场可编程门阵列(FPGA)等可编程逻辑器件(PLD)实现对1-WIRE器件的通信。   本文介绍利用ACTEL公司的ProASICplus系列FPGA实现与DS18B20的通信功能。FPGA可以
[工业控制]
Teledyne e2v 发布新一代高性能全局快门 CMOS 图像传感器
Emerald Gen2 是超高速清晰成像应用的理想选择 法国格勒诺布尔,2023 年 11 月 21 日 — Teledyne Technologies 子公司、全球成像解决方案革新者 Teledyne e2v 发布全新高水准 CMOS 图像传感器系列 Emerald™ Gen2。新系列在 Teledyne e2v 先进成像技术的基础上又增强了性能,使之成为各种机器视觉应用、室外监控以及交通检测与监控相机的理想选择。 Emerald Gen2 是超高速清晰成像应用的理想选择 Emerald Gen2 的型号分为 8.9 百万像素(4,096 x 2,160)和 12 百万像素(4,096 x 3,072)、单色和彩
[传感器]
Teledyne e2v 发布新一代高性能全局快门 CMOS 图像<font color='red'>传感器</font>
石墨烯整合到CMOS集成电路中 这款图像传感器了不得!
硅基CMOS技术是当今大多数电子产品依赖的主要技术。然而,为了电子行业的进一步发展,新技术必须开发具有能将CMOS与其他半导体器件集成的能力。欧洲最大的一项研究计划石墨烯旗舰项目(Graphene Flagship),即以10亿欧元的预算将实验室石墨烯转向市场,参与市场化竞争。下面就随电源管理小编一起来了解一下相关内容吧。 现在,来自巴塞罗那光电科学研究所ICFO的石墨烯旗舰项目研究人员,宣称已经可以将石墨烯整合到CMOS集成电路中。这项工作在“Nature Photonics”上发表。 该团队将石墨烯CMOS器件与量子点相结合,以形成一个阵列的光电探测器,产生高分辨率图像传感器。当作数码相机使用时,该设备能够同时感测紫外光、可
[电源管理]
基于FPGA的自适应数字传感器设计
高量程加速度传感器的一般灵敏度在1 mV左右,如果加速度信号在1g~10g的范围内,则传感器的输出在1 mV~10 mV,传统测试系统的噪声就可能覆盖如此小的电压信号,那么将会无法测到完整的加速度信号,这样会使测试结果的分析造成偏差。自适应数字传感器在选择高量程加速度传感器的条件下,能够根据加速度信号的幅值自动调整测试增益,保持加速度信号的完整输出,拓宽了动态测试范围,实现了加速度传感器测量的数字化、智能化的目标。 1 设计方案 1.1 系统总体设计 自适应数字传感器主要由自适应采集系统和实验验证系统两部分组成,自适应采集系统为数字传感器的核心模块,系统总体结构框图如图1所示。 自适应采集系统可根据输入信号的幅值动
[单片机]
基于FPGA的自适应数字<font color='red'>传感器</font>设计
晶心科技成为RISC-V CPU IP第一大供应商
自2017年IPO以来,晶心科技正在不断加强其在RISC-V CPU IP领域的领导者地位,过去七年销售额增长了五倍,年营收突破了10亿新台币。晶心投入资金和研发人力,加速高端产品的推出,以确保长期竞争力并保持市场领先地位。 (图片来源:SHD 2024 RISC-V 市场分析) 凭借对市场动态和技术趋势的密切监控以及果断的决策,晶心科技对公司树立了明确战略定位,以应对挑战并抓住新兴机遇,例如将其专有的AndeStar V3 ISA(指令集)变成2016年基于RISC-V的AndeStar V5ISA。2023年,即使整个行业仍面临库存压力,晶心科技的总出货量仍突破了140亿颗内置Andes的SoC。根据SHD于2024年
[半导体设计/制造]
晶心科技成为RISC-V <font color='red'>CPU</font> IP第一大供应商
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved