车载电池管理系统SOC现状分析与挑战

发布者:温馨时光最新更新时间:2016-05-06 来源: 21ic关键字:SOC  汽车电子  电池技术 手机看文章 扫描二维码
随时随地手机看文章
作为新能源行业分析领域的专业人士,接下来的日子将随着自己对新能源动力电池领域的深入分析,将一些电动汽车技术领域的基础知识分享给大家,真正了解行业本 质技术。此次选择动力电池管理系统的SOC分析,一方面是因为SOC是BMS的核心,BMS是动力电池的核心,动力电池是新能源汽车的核心,SOC对新能 源汽车至关重要;另一方面是因为新能源汽车整体太庞大,很难说深,说小说深较好把控,也学习的深入。

 

SOC是当前动力电池剩余电量/容量的简称,汽车通过SOC,知道目前的电量状态,通过SOC,我们把综合影响因素说开去,形成一个宏观系统的概念。

一:现状分析

如果没有准确的SOC,会出现的情况:

1、过充/过放情况,导致缩短电池寿命,趴窝等;

2、均衡的一致性效果不理想,降低输出功率,动力性能降低;

3、为了避免趴窝,设置过多冗余电量,减少整体能量输出;

所以SOC的精确估算意义重大,对车主而言,SOC直接反应的是当下的电量状态,还能行驶多远的距离,确保能顺利抵达目的地;对电池本身而言,SOC 的精确估计背后涉及开路电压、瞬时电流、充放电倍率、环境温度、电池温度、停放时间、自放电率、库伦效率、电阻特性、SOC初值、DOD等的非线性影响,而且这些外在特性彼此影响,彼此也受不同材料、不同工艺等的影响,所以精确估计SOC数值变得非常重要,其算法也是相关企业的核心竞争力之一。

接下来我们将讨论SOC算法的现状、深入分析其影响因素和实际问题讨论。

二:算法现状

目前SOC主流估算方法有放电法、安时积分法、开路电压法、神经网络法、卡尔曼滤波法。

■放电法即是将电池作放电实验,以放出电量的多少为电池容量,但实际行车情况剩余电量是用来行驶的,无法单纯以放电结果作为电量预估标准。

■安时积分法是通过初始 与工况状态下电流和时间积分的和来计算当前电量,当前SOC精度主要依赖初始 和瞬时电流的精度,但是随着时间延长,误差累计严重,且无法单独修正。

■开路电压法是根据不同材料体系、工艺的电池其静止开路电压与SOC的对应关系来计算。

 

但是准确的开路电压需要一段时间静置恢复,因为充电和放电过程会让电池内部化学反应持续一段时间,延长部分极化状态,形成极化电势,提高和降低瞬时开路电压,使单纯的开路电压在实际工况状态下受到行车干扰而不准确。故工况状态下测得的开路电压只能作为参考,并不是真实开路电压。

■神经网络法由局部电压、电流、温度、内阻等各种瞬时数据形成输入层,自动归纳规则成隐层,再通过系统模型的输出层收敛和优化形成瞬时SOC。各层信息互不通信、并无联系,但目前达到商业标准的收敛、优化、建模技术还没有实际解决,成本高,稳定性差特点,技术还在研究阶段。

 

■卡尔曼滤波法是匈牙利的R.E.Kalman 在 1960 年提出的基于最小均方差的数字滤波算法,用于最优估算动态系统状态。优点是对 的初始误差有很强的修正作用,缺点是需要较强的数据处理能力,准确度由电池模型决定。目前研究热度很大。

总结来说,神经网络法太难,卡尔曼滤波法研究非常多,但并不知道实际技术运行数据,放电法无法实际运用,安时积分和开路电压法单独使用误差很大。目前主流的方法是安时积分加开路电压法结合,实践起来较为容易,惠州亿能、科列和CATL等的乘用车误差基本可以实现在5%以内。

安时积分法和开路电压法影响因素影响因素也非常多,这些因素的分析对我们深入了解电池特性非常有必要,也能通过分析不断提高和改进SOC精确度的发展方向。

三、影响因素

SOC的准确性与动力电池密切相关,即使用安时积分和开路电压计算,但也需要其他影响因素的修正系数。开路电压、瞬时电流、充放电倍率、环境温度、电池温度、停放时间、自放电率、库伦效率、电阻特性、SOC初值、DOD以及材料特性和工艺等因素彼此相关,共同决定和影响SOC状态,下面我们将一一分析。

■开路电压是指电池未接负载两端的电压值。由于开路电压稳定值与SOC的大小存在曲线对应关系,特定的电池批次产品能通过拟合开路电压与SOC的数值关系,通过电压来判定SOC值,但实际运行过程中:

温度越高,开路电压越高。温度升高,电解液粘度越低,介电常数提高,欧姆内阻降低,电压升高;电极活性材料利用率越高,活化极化降低,锂离子迁移阻力降低,电压升高,同时容量和放电功率提高。温度降低情况相反。

 

(配图以磷酸铁锂实验数据为参考)

内阻越低,开路电压越高。

充电使开路电压变高,因为受到电极极化影响,电化学反应速度赶不上充电电荷传递速度,形成极化电势,使充电过程中和结束后一段时间开路电压高于稳定值。倍率越大极化越大,瞬时电压与真实电压误差越大。(这也是为何大电流充电电量不经用的原因——高倍率充电状态的电压值短时间偏大导致SOC值偏大,此时SOC值如果未计入高倍率充电误差系数将会失真严重)放电情况相反。

■瞬时放电电流高,电子迁移出去但正价锂离子还未迁移出去,使负极电势提高,正极得到电子但正价锂离子还未嵌入,使正极电势降低,两者情况共同作用,使总开路电压降低。倍率越高越明显,瞬时放电相反。

■温度越高,内阻越低,电解液离子迁移速度越快,电极活性提高,相对可以提高电池的容量和输出功率。实际SOC因温度升高变高,温度降低而变低。

■停放时间一是因为极化电势的衰减,二是自放电导致电量降低。当时间足够长,与自放电率的乘积便是电量修正减值。
 

■库伦效率是放出电量与充电电量的比值,更好的库伦效率,电池稳定性越好,容量折损越少,使用寿命越长。库伦效率与温度、倍率放电、放电深度DOD、循环次数等有关。

■SOC初值直接影响通过安时积分法和OCV方法计算的瞬时SOC,一般在电池均衡后标定准确,其影响因素与SOC的同样。

■DOD放电深度不同,稳定开路电压值也不同,如果过度充放电会造成电池不可逆的容量损失,过度充放会直接降低电池整体容量。

■内阻方面分交流内阻和直流内阻。功率和容量因素主要是直流内阻影响。直流内阻分为欧姆内阻和极化内阻。欧姆内阻由电极材料、电解液、隔膜等影响;极化内阻分为欧姆极化、活化极化、浓差极化,极化内阻同材料、工艺和工作条件密切相关。

简单归纳下内阻特性如下:

■材料特性方面,正极的电压斜率大如三元的三相变,电压好标定,斜率小如磷酸铁锂的两相变化,电压不好标定;电解液的温度特性、电压特性,温度、电压窗口越大,电解液越稳定,循环效率越大,容量损失越小;隔膜的浸润性、孔隙率、厚度、电阻等。

■工艺一方面比较重要的是散热工艺、电解液体系、压实密度等直接影响材料特性和环境温度,另一方面工艺也直接影响电池的一致性,一致性越好,SOC的标定也越准确。

 

(部分是稳定状态,部分是工作状态)

总体来说SOC的影响因素如上,这些因素是非线性互相影响,精确标定SOC非常困难。精确标定的SOC能提高电池使用寿命,提高输出功率,提高经济性和降低维护成本。除此之外,精确标定SOC的基础也能对电池安全有帮助。

四、电池安全

新能源汽车在发展过程中,安全性是第一位的,没有安全,环保和经济性都是没有意义的。其中,BMS主要负责电池的保护、监测、信息传输,其中保护是根据监测来判断,监测有电池的外部特性如电压、电流、温度等信息。SOC是依据这些监测的外部特性信息计算出来的传输信息。SOC告知车主当前电量的同时,也让汽车了解自身电量,防止过充过放,提高均衡一致性,提高输出功率减少额外冗余。系统底层内部都是经过复杂的算法计算,保证汽车安全持续稳定运行,提高安全性。

■过充过放

过充是指电池达到满充状态后还继续充电。判断满充状态与否,是根据电池安全性和保证电池持续可逆循环容量来决定的电池充电最大值。如果满充之后继续充电,将会导致正极锂离子过度脱出,晶体结构坍塌;温度上升,正极材料不可逆分解,减少正极材料活性容量,增加电解液副反应,释放氧气和热量。

负极可能析出锂枝晶,穿刺隔膜导致内部短路;温度升高使SEI膜溶解脱落,降低循环寿命,加大潜在欧姆内阻。

过充过放正常情况下会降低电池寿命,造成不可逆容量损失,减少输出功率,续航能力和爬坡性能降低;重则导致起火燃烧,很多事故就是过充过放引起的。

■均衡一致性

新能源汽车的部分或全部能源来自电能,驱动电机控制器、电机运转、冷热空调、仪器仪表等等。电池由单电池电芯形成模组形成电池箱,单个电芯电压容量低,所以需要成组串并联,串联提高电压,增加输出功率,并联提高容量,提高续航里程。

但是单个电芯不一致导致输出功率严重降低,续航里程下降,继而导致过充过放等现象的发生。此时需要对电池进行均衡,虽然目前国内流行主动均衡和被动均衡,但接下来不讨论两者差别,而讨论目前的均衡指标。

目前主流的均衡指标有电池实际容量、电池端电压和电池荷电状态三种。

 

▲电池实际容量均衡是让电池实际容量趋于一致为目的,其办法是将充满状态的电池组继续小电流充电,即用过充办法直到正负极板上出现气泡,消除小容量对整体电池性能的影响,但是过充影响电池寿命,不安全。

▲电池端电压均衡是将端电压趋于一致为目的。但实际情况下,充电时内阻大的电压端电压大,需要对其放电均衡,内阻小的端电压小,需要对其充电均衡;而在放电时候情况完全相反,内阻大的端电压小,需要对其充电均衡,内阻小的端电压大,需要对其放电均衡。这样整个充放电均衡过程非常混乱,效果并不理想。

▲电池荷电状态均衡是将电池SOC值一致为目的,提高功率输出,保证安全性。但是难点也在SOC不确定影响因素太多,如何精确估算SOC是关键。

■提高续航里程

精确SOC能便能放心减少额外冗余,提高电池可使用容量,增加续航里程。

五、总结

在新能源汽车蓬勃发展的今天,安全问题是第一问题。SOC是BMS的核心之一,保证电池安全,提高动力性能和循环寿命,经济效应和功能效应显著。解决安全问题,行业才能长久发展,掌握核心能力,企业才有可能成为行业独角兽。

关键字:SOC  汽车电子  电池技术 引用地址:车载电池管理系统SOC现状分析与挑战

上一篇:汽车ADAS领域成IC设计商重要发力点
下一篇:这些功能都是汽车里的高科技

推荐阅读最新更新时间:2024-05-03 00:22

汽车电子节气门控制系统ECU设计及其在ASR控制中的应用
0 引 言 早期节气门是为了调节汽油机的充气量,在化油器腔体上设置的节流装置,通过杠杆、钢丝拉线与油门踏板相连。因其常见为蝶形阀门,故称节气门。电控喷射系统取代化油器后,油路自成系统,进行压力喷射;在进气系统方面,保留了化油器进气道喉管下方的一个简单却非常重要的部件——节气门,并增设电子控制单元(ECU)、节气门位置传感器、空气流量计等监测工况。电子控制节气门系统(Electronic Throttle ControlSystem,ETC)是在电喷系统的节气门机构中,去掉了一些附属补偿装置,增加了新的电控单元、直流电机、减速齿轮、驱动电路等。与传统的节气门控制方法不同,电子节气门系统中节气门在任何工况下都直接由电机驱动;而且E
[工业控制]
<font color='red'>汽车电子</font>节气门控制系统ECU设计及其在ASR控制中的应用
新型锂电池技术均达标 具有阻燃性
近日,一款拥有多项国际发明专利的高性能超能量 新型锂电池 在广东环宇绿奥科技有限公司研制成功,将在深圳市会展中心举办的中国国际高新技术交易会亮相。 即将面世的新型锂电池,以凝胶固态的电解技术取代了液态电解技术,以内置中空弹簧夹层的空芯多电循环技术取代了实芯高阻循环技术,实现了新一代锂电池技术的创新超越。送检的a1—350ah新型锂电池,32项技术指标均高于国家标准。使锂动力电池在能量密度、安全性及循环寿命方面实现了重要突破。 新型锂电池具有良好的阻燃性能和热稳定性,基本杜绝了电解质因撞车流溢引发燃烧爆炸的可能性,突破了新能源汽车制造发展的技术瓶颈;新型锂电池在 -20℃低温状态下,放电性能达额定容量的99.2%,超过国家标准额定容
[电源管理]
南京科工园乔迁浦口:只为两岸集聚发展
2010年,为促进海峡两岸经济文化交流,市政府决定将科工园从原来的高新区调整至浦口区江浦片区的宁淮高速附近。历经5年岁月洗礼,科工园见证了浦口产业转型发展的辉煌,同时也承载了浦口产业发展的希冀,清华紫光集成电路产业园就是园区的代表性项目。    总投资90亿元、占地543.9亩的南京清华紫光集成电路产业园项目,涉及建设南京紫光创业孵化基地、成立集成电路产业发展基金、建立南京紫光微电子学院、整合旗下展讯通讯和锐迪科微电子落户浦口等7个方面内容,预计建成后实现产值120亿元以上,就业人数2万人以上。作为集成电路的“国家队”,清华紫光集团在集成电路芯片领域拥有行业领先的自主核心技术和核心产业能力,在收购了美国上市的展讯科技公司、并购了
[嵌入式]
汽车SoC安全:保护车载计算机以启用SDV实例
  它是一个收集信息的计算机系统和过程复杂而又高来自不同ECU的带宽数据,以及车辆中的传感器,例如Adas,信息娱乐,导航动力系统的应用。   大多数这些车载计算机需要片上系统(Soc)计算大量数据,然后提供结果。
[嵌入式]
汽车<font color='red'>SoC</font>安全:保护车载计算机以启用SDV实例
传统IT厂商进入汽车电子的机会在哪里?
      在4月23日开始的第11届北京汽车展上,深圳航盛电子股份有限公司、惠州华阳集团、南京阿福汽车控制系统有限公司等国内老牌的汽车电子厂商纷纷现身于北京国际展览中心。华阳集团展出了最新的、拥有先进导航及信息系统的数字屏汽车导航娱乐系统,还有类似于汽车黑匣子的汽车防撞系统。从元器件、激光头、机芯起家的华阳集团早已是汽车电子的老牌企业。   虽然这次展会仍是专业汽车电子厂商的聚会,但是,已经有一些先知先觉的传统IT厂商开始在汽车电子领域找市场,那么,他们的机会在哪里?    软件成为突破口   4月23日,软件外包领域的领头羊东软集团宣布以600万欧元收购全球汽车导航软件提供商ISG在德国汉堡的研发中心。这个研发中心
[汽车电子]
基于ET13X210/ET13X221器件实现汽车电子收费系统的设计
1、 引言 目前,国内的高速公路和快速道路大多采用人工收费和计算机辅助管理的半自动收费方式,这种方式大大降低了高速公路的通行能力和服务水平,但也存在很多不足和弊端,如收费没有监督、漏洞大、车、卡不一致,某些车辆可能非法逃票等等,为了解决这些问题,满足市场发展的需求,国内已开始尝试使用国际上迅速兴起的不停车收费系统(Electronic Toll Collection,简称ETC)。在ETC中,车辆通过收费站时利用车辆自动识别技术自动完成车辆与收费站之间的无线数据通信,进行车辆自动识别和有关收费数据的交换,通过计算机网络进行收费数据的处理,从而实现不停车自动收费,由于电子处理数据的高速度和高效率,从而加快车辆通行的速度,有效缓解可能
[嵌入式]
基于ET13X210/ET13X221器件实现<font color='red'>汽车电子</font>收费系统的设计
SoC 设计中的时钟低功耗技术
  1 概述    SoC 芯片设计的复杂度日益增加,其内部 时钟 设计越来越复杂,一个SoC 芯片内部通常存在若干个时钟域,由时钟网络引起的系统动态功耗成为近年来的研究热点。时钟网络引起的系统动态功耗分为2 个方面:(1)由于时钟网络的作用是为芯片内部所有时序单元提供时钟信号,因此时钟频率的快慢决定了时序单元和与之相连的逻辑单元的动态功耗,关断时钟将消除电路的动态功耗。(2)时钟网络自身的特点将导致巨大动态功耗的产生:1)时钟网络是芯片内规模最大的互连线网络,其负载巨大,负载来自因为互连线电容和平衡时钟树的偏差而插入的大量延时单元;2)时钟网络是芯片内翻转率最高的互连线网络,翻转率的高低直接决定了互连线动态功耗和互连线驱动
[电源管理]
<font color='red'>SoC</font> 设计中的时钟低功耗<font color='red'>技术</font>
看准移动领域 Intel大举进军SoC市场
  Intel公开向外宣布即将进军SoC集成电路市场。他们将采用Atom处理器,作为世界上最大的芯片公司,Intel公司的低功耗处理器瞄准的是便携应用市场,同时还努力尝试进入移动通信市场。 据Intel 公司SoC授权团队总经理Gadi Singer表示,该公司现在有15个SoC项目,其中有8个项目即将投入大规模化生产。   通过SoC的生产,Intel公司希望能够从ARM公司和MIPS公司占领的市场中分得一杯羹,同时平衡X86软件市场。具有处理器授权的ARM和MIPS公司,能够促进TI、三星、意法半导体这样的整合器件制造商在个人电脑和笔记本电脑之外的市场取得成功。   Intel看到移动因特网应用有很大的发展机遇,比如,定位
[其他]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved