超级电容在电动车中应用研究及发展趋势分析

发布者:rnm888最新更新时间:2016-06-13 来源: eechina关键字:超级电容  电动车 手机看文章 扫描二维码
随时随地手机看文章
超级电容一蓄电池复合电源系统综合了超级电容和蓄电池的优点,不仅可以改善电动车的瞬时功率特性,而且可以避免蓄电池大电流放电,延长蓄电池的使用寿命,增加电动车的续驶里程,因此将是超级电容应用于电动车领域的重要发展方向,并具有广阔的市场前景。

由于环境污染和石油危机的双重压力,电动车已经逐渐成为人们生活中一种重要的绿色交通工具。电源是电动车的能量源泉,但目前电池技术还不能完全满足电动车的要求。

超级电容是一种介于电池和静电电容器之间的储能元件,具有比静电电容器高得多的能量密度和比电池高得多的功率密度,不仅适合于作短时间的功率输出源,而且还可利用它比功率高、比能量大、一次储能多等优点,在电动车启动、加速和爬坡时有效地改善运动特性。此外,超级电容还具有内阻小,充放电效率高(90%以上)、循环寿命长(几万至十万次)、无污染等独特的优点,和其他能量元件(发动机、蓄电池、燃料电池等)组成联合体共同工作,是实现能量回收利用、降低污染的有效途径,可以大大提高电动车一次充电的续驶里程。因此,超级电容在电动车领域有着广阔的应用前景,将是未来电动车发展的重要方向之一。

目前,日本、美国、瑞士、俄罗斯等国家都在加紧超级电容的开发,并研究超级电容在电动车驱动和制动系统中的应用,而我国超级电容的生产和应用还处于起步阶段。




1、超级电容的机理与特点

超级电容(Ultracapacitor)是近期发展起来的一种新型储能元件,是一种具有超级储电能力、可提供强大脉动功率的物理二次电源,它与常规电容器不同,其容量可达数万法。超级电容按储能机理主要分为三类:①由碳电极和电解液界面上电荷分离产生的双电层电容;②采用金属氧化物作为电极,在电极表面和体相发生氧化还原反应而产生可逆化学吸附的法拉第电容;③由导电聚合物作为电极而发生氧化还原反应的电容。

由于双电层电容的充放电纯属于物理过程,其循环次数高,充电过程快,因此比较适合在电动车中应用。双电层超级电容是靠极化电解液来储存电能的一种新型储能装置,其原理结构如图l所示。当向电极充电时,处于理想化电极状态的电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面形成双电荷层,构成双电层电容。由于超级电容与传统电容相比,储存电荷的面积大得多,电荷被隔离的距离小得多,因此一个超级电容单元的电容量就高达几法至数万法。由于采用了特殊的工艺,超级电容的等效电阻很低,电容量大且内阻小。使得超级电容可以有很高的尖峰电流,因此具有很高的比功率,高达蓄电池的50~100倍,可达到10kW/kg左右,这个特点使超级电容非常适合于短时大功率的应用场合。

超级电容具有极其优良的充、放电性能,在额定电压范围内,可以以极快的速度充电至任一电压值,放电时则可以放出所存储的全部电能,而且没有蓄电池快速充电和放电的损坏问题。此外,超级电容还具有不污染环境及机械强度高、安全性好(防火、防爆)、使用过程中免维护、使用寿命长(大于10年)和工作温度范围宽(一30℃~ 45℃)等优点,并且在瞬间高电压和短路大电流情况下有缓冲功能,能量系统较为稳定。超级电容与铅酸电池和普通电容的性能对比见表1。

2、应用研究现状




2.1国内外的应用研究进展

由于超级电容的优越性能和近年来对超级电容开发能力的提高,因此超级电容在工业领域中得到了广泛应用。目前,世界各国争相研究、并越来越多地将其应用到电动车上。超级电容已经成为电动车电源发展的新趋势,而超级电容与蓄电池组成的复合电源系统被认为是解决未来电动车动力问题的最佳途径之一。

2.1.1日本的情况

日本本是将超级电容应用于混合动力电动汽车的先驱,超级电容是近年来日本电动车动力系统开发中的重要领域之一。本田的FCX燃料电池一超级电容混合动力车是世界上最早实现商品化的燃料电池轿车,该车已于2002年在日本和美国的加州上市。日产公司于2002年6月24日生产了安装有柴油机、电动机和超级电容的并联混合动力卡车,此外还推出了天然气一超级电容混合动力客车,该车的经济性是原来传统天然气汽车的2.4倍。目前,装备超级电容的混合动力电动公交车已经成为日本的国家攻关项目。

2.1.2欧美的状况

瑞士的PSI研究所给一辆48kW的燃料电池车安装了储能360Wh的超级电容组,超级电容承担了驱动系统在减速和起动时的全部瞬态功率,以50kW的15s额定脉冲功率来协助燃料电池工作,牵引电机额定连续功率为45kW,峰值功率为75kW,采用360V的直流电源。大众Bora实验车进行的燃油消耗测试结果表明其油耗少于7L/100km,而相同质量的BMW7系列油耗则为10.7L/100km。1996年俄罗斯的Eltran公司研制出以超级电容作电源的电动汽车,采用300个电容串联,充电一次可行驶12km,时速为25km/h。美国在超级电容混合动力汽车方面的研究也取得了一定进展,Maxwell公司所开发的超级电容器在各种类型电动汽车上都得到了良好的应用。美国NASALewis研究中心研制的混合动力客车采用超级电容作为主要的能量存储系统。

2.1.3中国的现状

目前,国内对以超级电容作为惟一能源的电动汽车的研究取得了一定的进展,2004年7月我国首部“电容蓄能变频驱动式无轨电车”在上海张江投入试运行,该公交车利用超级电容比功率大和公共交通定点停车的特点,当电车停靠站时在30s内快速充电,充电后就可持续提供电能,时速可达44km/h。2005年1月上海交通大学与山东烟台市签署协议,共同投资开发超级电容公交电车,计划在烟台福山区建一条12km的示范线,在福山高新技术产业区建立年产1万辆新型环保超级电容公交车的生产基地。哈尔滨工业大学和巨容集团研制的超级电容电动公交车,可容纳50名乘客,最高速度20km/h。但是,国内目前对超级电容一蓄电池复合电源电动车的设计及控制,基本上还处于起步阶段。 2.2电动车中应用超级电容的拓扑结构

2.2.1纯超级电容电动车

直接以超级电容作为电动车的惟一能源,此方法结构简单、实用、成本低,而且实现了零排放,因此比较适合用于短距离、线路固定的区域,例如火车站或者飞机场的牵引车、学校和幼儿园的送餐车、公园的浏览车和电动公交车等。

2.2.2复合电源电动车

超级电容与蓄电池、燃料电池等配合可以组成复合电源系统,但燃料电池因为成本较高,现在还不能得到实际应用。因此,国内外对超级电容一蓄电池复合电源系统的研究更多,其拓扑结构概括如图2所示。图2a结构最简单,但由于没有DC/DC变换器,蓄电池和超级电容将具有相同的电压,以致超级电容仅在蓄电池电压发生快速变化时输出和接收功率,从而减弱了超级电容的负载均衡作用。图2b与图2c都采用了双向OC/OC变换器,图2b中双向DC/DC跟踪检测蓄电池的端电压,以调控超级电容的端电压使两者匹配工作。由于蓄电池端电压的变化比超级电容的端电压平缓,因此对于DC/DC,图2b比图2c易于控制。图2d理论上虽然具有更高的灵活性,但对DC/DC的控制策略要求非常精确复杂且不易维护。
                                
2.3复合电源系统的控制策略




2.3.1速度约束控制策略

当车辆起步时,超级电容中应当储存较多的能量,需要超级电容放电,保证电动车的加速性能,而当车辆在高速行驶的情况下,超级电容应当储存比较少的能量,以便在制动过程中接收较多的能量。超级电容储存的能量与其端电压的平方成正比,由于超级电容的端电压变化范围比较大,因此放电时如何控制其放电深度,以备在行驶过程中二次放电或进行再生制动回收充电,但需要在实验中反复进行测试才能获得。

2.3.2电流约束控制策略

电动车在行驶过程中,由于频繁地加速、减速和上下坡等原因,使得负载电流变化比较大,当负载电流太大以至于超过蓄电池所能承受的最大放电或充电电流时,为了避免电池组过放电或过充电,需要由超级电容放电或充电,以便改善电池组的工作状态,延长其使用寿命。电池组的工作电流为:



为了避免过大的回馈电流对蓄电池造成损害,可采用恒定充电电流的制动方式,即以蓄电池充电电流为被控对象。这是一种比较实用的控制策略,适合于采用蓄电池单电源系统的电动车。由于蓄电池电压在再生制动过程中不会发生明显的变化,因此电枢电流的上升不会太大。在超级电容一蓄电池复合电源系统中,由于超级电容端电压在单次再生制动过程中就会发生很大的改变,随着制动过程中超级电容端电压的上升和电机反电动势的下降,电枢电流将急剧上升,有可能对功率器件甚至电机造成损害,因此对超级电容充电时可采用恒功率的策略,即对再生制动过程中超级电容的充电功率进行控制。

在超级电容电压低的时候,采用大电流充电,当电容电压上升时,充电电流指令值下降,可兼顾能量回收与系统器件保护。

2.3.3综合控制策略

采用速度约束控制策略可使车辆的动力性能得到提高,而采用电流约束控制策略时蓄电池的电流可以工作在规定的范同内,对蓄电池有保护作用。这2种控制策略各有优缺点,采用综合控制策略。即将速度约束控制策略和电流约束控制策略进行综合应用,可以兼顾它们的优点,既能对蓄电池起到保护作用,延长电池的使用寿命,又能提高整车的动力性能。

3、西安交通大学的超级电容应用研究

西安交通大学电动车研发中心一直致力于电动车关键技术领域的研发,提交了15项国家发明专利,正式授权5项,有2项国际发明专利已经被正式受理。研发中心对电动汽车超级电容一蓄电池复合电源系统进行了研究,其核心是应用了双向全桥DC/DC变换器,该变换器具有能量双向流动以及升、降压功能。研发中心率先将Hα鲁棒控制算法应用到电动汽车复合电源能量回收技术上,和传统控制方法相比,Hα鲁棒控制可以方便地同时考虑输入电压的变化、负载扰动和其他非线性的补偿。由图3所示的实验表明,在市内道路行驶时,采用Hα,鲁棒控制的复合电源电动汽车(ⅪTUEV—I)比蓄电池单电源电动汽车提高续驶里程30%~50%。

西安交通大学电动车研发中心还依托西安交大科技园和博源电动车技术有限责任公司合作进行了超级电容一蓄电池复合电源微型电动车的研究。该微型电动车采用轮毂式无刷直流电机(BLDCM),运用再生制动能量回收技术,并应用了μ综合鲁棒控制算法。实验证明,采用上述技术的微型电动车比普通电动车在动力性能和续驶里程上都有显著提高,尤其是在频繁刹车和突然加速的工况下,效果提高更明显。设计的复合电源微型电动车控制系统的主电路如图4所示,工作原理如图5所示,系统工作状态如表2所示。该复合电源微型电动车具有如下优点:①在车辆制动和减速时可大电流充电,从而提高能量回收效率,延长电动车的续驶里程;②超级电容的功率密度较大,因此可大电流放电,改善电动车的启动、加速、爬坡性能;③可避免蓄电池大电流充放电,提高蓄电池的使用寿命;④可提高制动力矩,改善制动系统的可靠性;⑤回收时可先对超级电容充电,再对电池充电,所以可控性较好;⑥结构紧凑,成本较万方数据。




4、超级电容的应用发展趋势

超级电容由于具有比功率高、循环寿命长、充放电时间短等优势,因此作为电动车的动力源(13.48,0.090,0.67%)而得到重视。随着环保型电动车研究的深入。超级电容已经成为近年来新型能源器件的一个研究热点,超级电容的市场份额也将会越来越大。

用超级电容作为惟一能源的电动车,由于超级电容比能量低的致命影响,注定其续驶里程短,难以推广应用。如果超级电容的比能量不能在近阶段内有突破性进展,那么以超级电容作为惟一能源的电动车在近几年里就很难进入实用阶段。

超级电容和其他储能元件组成的复合电源系统兼顾了其他储能元件的高比能量和超级电容的高比功率的优点,可以更好地满足电动车启动和加速性能的要求,并能提高电动车制动能量的回收效率。增加续驶里程。目前,超级电容可以和蓄电池、燃料电池、飞轮电池等组成复合电源系统。由于燃料电池存在成本很高、冷启动响应慢等缺陷,因此近几年还处于实验阶段。飞轮电池的使用条件要求比较苛刻,再加上安全考虑,因此目前还很难有所突破。对蓄电池的研究目前已相当成熟,并且它成本相对较低,在电动车能源领域占有重要的地位,因此超级电容一蓄电池复合电源系统最具有竞争力。随着对电动车用超级电容的进一步研究和开发,超级电容一蓄电池复合电源系统在满足性能和成本要求上更具有实用性,其市场前景广阔,经济效益显著。

5、结论

本文在介绍超级电容的机理特性和概述国内外超级电容在电动车中应用现状的基础上,总结了超级电容应用在电动车中的拓扑结构及其控制策略。西安交通大学电动车研发中心通过对电动车和超级电容的研究,认为:超级电容比能量低的特性决定了以超级电容为惟一能源的电动车只适合用于短距离和线路同定的区域,因此近期内难以推广应用。超级电容一蓄电池复合电源系统综合了超级电容和蓄电池的优点,不仅可以改善电动车的瞬时功率特性,而且可以避免蓄电池大电流放电,延长蓄电池的使用寿命,增加电动车的续驶里程,因此将是超级电容应用于电动车领域的重要发展方向,并具有广阔的市场前景。
关键字:超级电容  电动车 引用地址:超级电容在电动车中应用研究及发展趋势分析

上一篇:百度放豪言:五年内量产无人汽车,驾照可以扔了
下一篇:奔驰汽车的通信为什么能固若金汤

推荐阅读最新更新时间:2024-05-03 00:27

特斯拉:高性能的电动车的“养成记”
市面上的电动汽车越来越多,电动汽车没有尾气污染、噪音低、性能高,预计2025年就能把汽油和柴油汽车挤出市场。特斯拉ModelS型电动汽车如今是世界上加速度最快的量产汽车。下面就随汽车电子小编一起来了解一下相关内容吧。 为了让大家明白电动汽车是如何获得超高的性能,本视频将分别分析电动汽车中的感应电动机,逆变器,锂离子电池,以及整个汽车是如何协同工作的。   特斯拉:高性能的电动车的“养成记” ▌感应电动机 特斯拉汽车由感应电动机驱动,感应电动机是尼古拉˙特斯拉在一个世纪前发明的,特斯拉汽车的名字也是为了纪念尼古拉˙特斯拉而取的。 感应电动机有两个主要的部件,定子和转子。转子由横着的多根导电杆,两端的导电圆盘,以及夹在导电圆盘之
[汽车电子]
LEAF电动车LED前照灯的热分析
要想降低LED前照灯的耗电量,只通过第一回中提到的配光控制来减少白色LED的光损失,并在少数几个地方获得所期望的配光特性是不够的。此外还必须能够在高效状态下使用白色LED。而其中的关键就在于如何使白色LED产生的热量释放出去的散热设计。其实,输入白色LED的功率大都变成了热能。如果这些热量使白色LED的温度上升,则发光效率就会下降,导致发热量增加。这样一来,就会陷入发光效率进一步下降、发热量变得更大的恶性循环。 此次市光工业在LED前照灯的散热设计中使用了热流体解析模拟技术。在前照灯散热设计中使用热流体解析模拟的情况并不少见,不过,此次是在更上游的设计过程,也就是树脂等材料的耐热性、对流、部件布局及散热片的设计等基础设计中使用了该
[嵌入式]
丰田迫于现实不得不转型电动车
据外媒报道,丰田是一家在油电混动领域起步很早的公司并且从中已经赚了不少钱,为此,它在不断改进这项技术。所以在某些程度上它的混动汽车是世界上最好的,但随着现在越来越汽车厂商的入局,丰田将不得不迎头赶上。 据路透社的一篇最新报道指出,这也是丰田决定加快电气化的原因。据悉,这家公司计划到2025年实现一半销售来自电动汽车的目标。很显然,这对于这家公司是一个艰巨的任务。其中满足电池的需求量就是一大挑战,不过这家公司已经将希望放在了中国电池制造厂商身上。 另外,丰田对电池技术的研究--包括改进锂离子化学性能以此来降低对稀土的依赖和将固态电视技术推向市场--将让事情变得更加令人兴奋。 还有别忘了氢燃料电池,看起来这家汽车厂商并没有
[嵌入式]
欧美推动电动车发展,未来20年中国或成制造商主战场
彭博社报道,彭博新能源财经(BloombergNEF)发布的最新报告显示,随着美国和欧洲政府推动电动汽车技术发展,中国将成为未来20年电动汽车制造商的主要战场。报告中指出,在2018年全球电动汽车销量首次突破100万辆之后,明年亚洲国家的电动汽车销量将达到200万辆。 研究人员表示,中国目前占全球电动汽车销量的一半以上,但其它地区将开始迎头赶上。到2040年,中国的电动汽车市场份额将缩减至25%左右。 不过像大众(Volkswagen)和特斯拉(Tesla)这样的汽车制造商依然不能放松对中国市场的关注。这两个汽车品牌都计划在中国生产电动汽车,日产(Nissan)则在中国本土行业寻找收购目标。而北汽和比亚迪等中国品牌,则在努
[嵌入式]
四轮独立驱动电动车高速CAN网络数据分析系统设计
伴随着电动汽车的发展,CAN总线通讯技术应用越来越广泛,它可为纯电动汽车上四轮独立驱动控制,以及刹车防抱死系统(ABS)、电子稳定装置(ESP)等主动安全系统的实现提供便利。   在设计CAN总线通信系统时,总要面临着CAN数据的诊断与分析问题,不能解决该问题,便不能完成设计。本文基于Kvaser Leaf Professional HS这一USB_CAN工具,借助于Visual Basic环境,在PC机上开发出数据分析系统,并在该分析系统与四轮独立驱动电动车电机控制板之间实现了CAN通信。通过对CAN总线数据进行诊断分析,能够更好地完成CAN总线系统的设计。 四轮独立驱动 电动车控制策略   电动车实物模型中使用的分
[汽车电子]
四轮独立驱动<font color='red'>电动车</font>高速CAN网络数据分析系统设计
曾经是贵族标志 世界十大电动车制造商
  在一百多年前的电动汽车先驱者中,还能够延续至今的,只剩下保时捷一家。作为个性与财富的象征,刚刚诞生的电动汽车曾是成功人士的必备座驾。在纽约市第一次全国汽车展上的一次民意调查中,顾客把电动车作为他们的首选,汽油车虽然崭露头角,但在当时人们的心目中还比不上蒸汽车。100多年后,更多的电动汽车新兴企业正在悄然崛起。 由斐迪南-保时捷(Ferdinand Porsche)设计制造的世界上第一辆有点混合动力车   世界上第一辆油电混合动力轿车由斐迪南-保时捷(Ferdinand Porsche)在1899 年制成。当时斐迪南德-保时捷正在奥匈帝国皇家马车厂——洛纳公司工作,因此该车被命名为洛纳-保时捷轿车(Lohner-Pors
[汽车电子]
产研:2023年电动车十大硬件技术预测
导语:2023年,围绕汽车800V甚至更高压平台的普及,对于快充、电池、电驱、电容等一系列硬件都提出了更高的要求。其中有哪些硬件技术将实现快速落地量产? 中国汽车工业协会最新数据显示,2022年,我国汽车产销分别完成2702.1万辆和2686.4万辆,同比增长3.4%和2.1%,全年实现小幅增长,我国汽车产销总量已连续14年居全球第一。预计2023年新能源汽车产销涨幅和新车渗透率预计都将在40%左右,整体销量规模有望触达1000万辆。届时,中国将有望成为全球第一个新能源汽车进入千万量级的国家。 随着新能源汽车销量和渗透率的增加,消费者对于新能源车的痛点也急需解决:续航焦虑、补能焦虑、成本焦虑。各大车企纷纷引入高压平台以解决
[汽车电子]
产研:2023年<font color='red'>电动车</font>十大硬件技术预测
可爬楼梯,可旋转90度立足的电动车
电动车都是滚动式的向前运行,那么有没有既是轮胎滚动运动,又可以变成爬楼梯的电动汽车呢?下面图的这个结构就可以完美实现,但要真正地成为量产产品,尚需时日。 轮式形态 轮式形态时,和传统的车辆是一样的运动形式,只不过在起伏的路面时,通过连接轮胎的连杆上下运动做减震。 足式状态 足式状态时,电动轮毂旋转90度直接变成足式运动时的脚,通过连杆部分的伸缩完成抬腿向前迈的运动状态。 该动力系统部分可以分为足端轮毂,转向电机、屈伸和摆动电机,一个腿上有4个电机动力系统,每个驱动系统需要有更好的匹配和联动,同时需要电机尺寸和重量更轻更小。轴向磁场电机就具有更轻更小的优势,同时具有大扭矩、快速响应的性能优势,是该
[机器人]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved