变频器的工作原理

发布者:沭阳小黄同志最新更新时间:2016-10-19 来源: eechina关键字:变频器  工作原理 手机看文章 扫描二维码
随时随地手机看文章
变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。

[注:再次整流(直流变交流)--->更贴切的叫法是 逆变!在这里感谢蔡工给我们编辑们提的意见!也欢迎大家多给我们编辑组提出更多宝贵的意见和建议!mym(2005.08.23)   ]

1. 电机的旋转速度为什么能够自由地改变?
    *1: r/min 
     电机旋转速度单位:每分钟旋转次数,也可表示为rpm.
     例如:2极电机 50Hz 3000 [r/min]
      4极电机 50Hz 1500 [r/min]
    
    $电机的旋转速度同频率成比例
     本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。
     感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。   由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。
     另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。
     因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。
     n = 60f/p
    n: 同步速度
    f: 电源频率
    p: 电机极对数
  
  $ 改变频率和电压是最优的电机控制方法
    如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。
  输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。
    例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V
  
2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?
    *1: 工频电源
     由电网提供的动力电源(商用电源)
    *2: 起动电流
     当电机开始运转时,变频器的输出电流
    ------变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动------
    电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。
     通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。
     通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。
  
3. -----当变频器调速到大于50Hz频率时,电机的输出转矩将降低-----
    通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te, P<=Pe)
    变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。
    当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。
    举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。
    因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie) 
  
4. 变频器50Hz以上的应用情况
    大家知道, 对一个特定的电机来说, 其额定电压和额定电流是不变的.
  如变频器和电机额定值都是: 15kW/380V/30A, 电机可以工作在50Hz以上
    当转速为50Hz时, 变频器的输出电压为380V, 电流为30A. 这时如果增大输出频率到60Hz, 变频器的最大输出电压电流还只能为380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速.
    这时的转矩情况怎样呢?
    因为P=wT (w:角速度, T:转矩). 因为P不变, w增加了, 所以转矩会相应减小.  
    我们还可以再换一个角度来看:
    电机的定子电压 U = E + I*R (I为电流, R为电子电阻, E为感应电势)
    可以看出, U,I不变时, E也不变.
    而E = k*f*X, (k:常数, f: 频率, X:磁通), 所以当f由50-->60Hz时, X会相应减小 
    对于电机来说, T="K"*I*X, (K:常数, I:电流, X:磁通), 因此转矩T会跟着磁通X减小而减小.
    同时, 小于50Hz时, 由于I*R很小, 所以U/f=E/f不变时, 磁通(X)为常数. 转矩T和电流成正比. 这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力. 并称为恒转矩调速(额定电流不变-->最大转矩不变)
    结论: 当变频器输出频率从50Hz以上增加时, 电机的输出转矩会减小.
      
5. 其他和输出转矩有关的因素
  发热和散热能力决定变频器的输出电流能力,从而影响变频器的输出转矩能力。
  载波频率: 一般变频器所标的额定电流都是以最高载波频率, 最高环境温度下能保证持续输出的数值. 降低载波频率, 电机的电流不会受到影响。但元器件的发热会减小。
  环境温度:就象不会因为检测到周围温度比较低时就增大变频器保护电流值.
    海拔高度: 海拔高度增加, 对散热和绝缘性能都有影响.一般1000m以下可以不考虑. 以上每1000米降容5%就可以了.
  
6. 矢量控制是怎样改善电机的输出转矩能力的?
    *1: 转矩提升
     此功能增加变频器的输出电压(主要是低频时),以补偿定子电阻上电压降引起的输出转矩损失,从而改善电机的输出转矩。  
    $ 改善电机低速输出转矩不足的技术
    使用"矢量控制",可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。
     对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。变频器的这个功能叫做"转矩提升"(*1)。
     转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。 因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。
     "矢量控制"把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。
     "矢量控制"可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。
关键字:变频器  工作原理 引用地址:变频器的工作原理

上一篇:电动机绕组的结构型式
下一篇:电机起动方式的选择

推荐阅读最新更新时间:2024-05-03 00:45

西门子变频器工作原理 西门子变频器的特点
  西门子变频器是一种能够改变电机运行频率和电压的电力设备,也被称为“调速器”或“变频调速器”。它能够控制交流电源设备的电压和频率,并将输出信号提供给电机,从而使电机按照预设的速度运行。   西门子变频器的工作原理可以分为以下几个方面:   1. AC/DC转换:西门子变频器首先将输入的交流电(AC)转换成直流电(DC),这通常是通过一个整流器实现的。   2. 电容器平滑:然后,直流电通过一个或多个电容器进行平滑和稳定,以确保其在变频过程中保持稳定。   3. PWM调制:西门子变频器使用脉宽调制(PWM)技术来控制输出电源的频率和功率。这是通过调整输入直流电压的占空比来实现的,通常使用IGBT(绝缘栅双极型晶体管)开关器件
[嵌入式]
PLC控制系统的工作原理、功能特点及结构组成
PLC控制系统是一种程序控制设备,它通过预先编写好的程序,控制输入/输出(I/O)信号的状态,从而实现对现场设备的自动控制、监测和操作。它广泛应用于自动化生产线、工厂、机械等现代工业制造领域,可以用于控制传感器、执行器、电机、马达和其他各种设备,实现灵活、高效、可靠和自动化的控制和管理。 PLC控制系统的工作原理 PLC控制系统是一种用于工业自动化控制的电子设备,它的工作原理如下: 1.输入信号采集:PLC控制系统通过输入模块接收来自传感器、开关、按钮等外部设备的信号,如温度、压力、位置、速度等。 2.信号处理:PLC控制系统对采集到的信号进行相应的处理,包括信号滤波、放大、变换、比较等,确保信号的可靠性和正确性。 3.逻辑运
[嵌入式]
变频器对普通异步电动机的影响
    1、普通异步电动机的效率和温升的问题。不论哪种形式的变频器,在运行中均产生不同程度的谐波电压和谐波电流,使普通异步电动机在非正弦电压、电流下运行。其中,高次谐波对普通异步电动机的运行效率和温升影响最大。高次谐波会引起普通异步电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为普通异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使普通异步电动机额外发热,效率降低,输出功率减小,如将普通异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。
[嵌入式]
电动机控制电路的工作原理
电动机单向控制电路的工作原理 电动机单向控制电路见图所示。 电动机单向控制电路原理图 启动电动机时,合上电源开关QS,按下启动按钮SB1,接触器KM线圈获电,KM主触点闭合,使电动机M运转;松开SB1,由于接触器KM常开辅助触点闭合自锁,控制电路仍保持接通,电动机M继续运转。停止时,按SB2,接触器KM线圈断电,KM主触点断开,电动机M停转。 具有自锁的正转控制线路的另一个重要特点是它具有欠电压与失压(或零压)保护作用。当电动机过载时,主回路热继电器FR所通过的电流超过额定电流值,使FR内部发热,其内部金属片弯曲,推动FR常闭触点断开,接触器KM的线圈断电释放,电动机便脱离电源停转,起到了过载保护作用。 电动机点动控制
[嵌入式]
电动机控制电路的<font color='red'>工作原理</font>
网络电缆测试仪工作原理_网络电缆测试仪怎么用
网络测试仪通常也称专业网络测试仪或网络检测仪,是一种可以检测OSI模型定义的物理层、数据链路层、网络层运行状况的便携、可视的智能检测设备,主要适用于局域网故障检测、维护和综合布线施工中,网络测试仪的功能涵盖物理层、数据链路层和网络层。 网络测试仪分类 1、网络测试仪按网络传输介质可以分为无线网络测试仪和有线网络测试仪两类。 2、网络测试仪按功能可以分为线缆检测仪、多功能网络测试仪和网络性能测试仪。 3、网络测试仪按用途可以分为网络施工设备和网络维护设备。 网络测试仪使用范围 局域网管理 随着网络的飞速发展,网络的稳定和安全在企事业单位里变得举足轻重,网络管理员的责任也随之加重,繁重的网络故障也将随之而来
[测试测量]
频谱分析仪基础知识:外差式频谱分析仪的工作原理
  频谱分析仪是利用频率域对信号进行分析、研究的一种测量仪器,对于信号分析来说它是不可少的,随着通讯技术的迅猛发展,越来越多的野外作业需要频谱仪的支持(频谱分析仪的种类),如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,其应用领域广泛,并且各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。那么频谱分析仪的工作原理是什么呢?一般来说频谱分析仪的工作原理(数字万用表使用)可以从以下两个方面来说:   一是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。我们把这种方法叫作动态信号的数学分析方法。特点是比较快,有较高的采样速率,较高的分辨率。即使是两个信号间隔非常近,用傅立叶变换也可将它们分辨出来。但
[测试测量]
微能科技WIN-V63系列变频器共直流母线解决方案
多台变频器应用在共直流母线场合时,由于变频器之间的直流母线连接在一起,处于发电工作状态的变频器和处于电动工作状态的变频器之间的母线能量可以相互流动,使公共母线的电压保持相对稳定,系统配置合理时不需要外配能耗制动单元,达到达到节能和降低系统成本的目的。 1 共母线方案适用场合 并非所有变频器都适合将母线电压连接在一起进行共母线应用,只有所驱动的负载电机存在频繁的电动和发电交替工作工况变频器组成的电气传动系统才应当考虑共母线应用。 2 共母线应用注意事项 1) 变频器母线连接接线问题 对于多台变频器共直流母线系统中,尤其是不同功率等级的变频器共直流母线,母线之间连接通过保险丝保护是非常重要的。当共母线中的一台变频器功率器件发生短路击穿等
[电源管理]
微能科技WIN-V63系列<font color='red'>变频器</font>共直流母线解决方案
变频器过载怎么调参数
变频器是工业控制系统中的重要设备之一,其主要功能是将交流电源转换成可调节的交流电源输出,以控制电机转速和负载。在使用变频器时,可能会遇到过载问题,主要表现为变频器输出电流超过额定电流,导致设备故障或停机。本文将介绍如何通过调节参数来解决变频器过载的问题。 1. 确定过载原因 在调整参数之前,我们需要先确定过载的原因,以便有的放矢地采取措施。通常情况下,变频器过载的原因有以下几种: (1)负载过重:当负载超过电机设计器定的负载时,电机会发出过载信号,这时变频器就会限制输出电流,以保护电机不受损坏。 (2)工作条件不良:比如机器运行环境温度过高、机器加速度过快等。 (3)控制器参数错误:变频器的控制器参数设置错误可能导致过载。 (4)
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved