变频器原理与接线图

发布者:EnchantedMelody最新更新时间:2023-04-11 来源: elecfans关键字:变频器  接线图  变频技术 手机看文章 扫描二维码
随时随地手机看文章

  变频器原理及接线图

  变频器原理(英文Variable-frequency Drive,简称VFD)是应用变频技术与微电子技术的原理,通过改变电机工作电源频率的方式来控制交流电动机的电力控制设备。使用的电源分为交流电源和直流电源,一般的直流电源大多是由交流电源通过变压器变压,整流滤波后得到的。交流电源在人们使用电源中占总使用电源的95%左右。


  变频器简介

  变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。

  变频器主要用来通过调整频率而改变电动机转速,因此也叫变频调速器。


  变频器接线方法

  一、主电路的接线

  1、电源应接到变频器输入端R、S、T接线端子上,一定不能接到变频器输出端(U、V、W)上,否则将损坏变频器。接线后,零碎线头必须清除干净,零碎线头可能造成异常,失灵和故障,必须始终保持变频器清洁。在控制台上打孔时,要注意不要使碎片粉末等进入变频器中。

  2、在端子 ,PR间,不要连接除建议的制动电阻器选件以外的东西,或绝对不要短路。

  3、电磁波干扰,变频器输入/输出(主回路)包含有谐波成分,可能干扰变频器附近的通讯设备。因此,安装选件无线电噪音滤波器FR-BIF或FRBSF01或FR-BLF线路噪音滤波器,使干扰降到最小。

  4、长距离布线时,由于受到布线的寄生电容充电电流的影响,会使快速响应电流限制功能降低,接于二次侧的仪器误动作而产生故障。因此,最大布线长度要小于规定值。不得已布线长度超过时,要把Pr.156设为1。

  5、在变频器输出侧不要安装电力电容器,浪涌抑制器和无线电噪音滤波器。否则将导致变频器故障或电容和浪涌抑制器的损坏。

  6、为使电压降在2%以内,应使用适当型号的导线接线。变频器和电动机间的接线距离较长时,特别是低频率输出情况下,会由于主电路电缆的电压下降而导致电机的转矩下降。

  7、运行后,改变接线的操作,必须在电源切断10min以上,用万用表检查电压后进行。断电后一段时间内,电容上仍然有危险的高压电。


  二、控制电路的接线

  变频器的控制电路大体可分为模拟和数字两种。

  1、控制电路端子的接线应使用屏蔽线或双绞线,而且必须与主回路,强电回路(含200V继电器程序回路)分开布线。

  2、由于控制电路的频率输入信号是微小电流,所以在接点输入的场合,为了防止接触不良,微小信号接点应使用两个并联的节点或使用双生接点。

  3、控制回路的接线一般选用0.3~0.75平方米的电缆。


  三、地线的接线

  1、由于在变频器内有漏电流,为了防止触电,变频器和电机必须接地。

  2、变频器接地用专用接地端子。接地线的连接,要使用镀锡处理的压接端子。拧紧螺丝时,注意不要将螺丝扣弄坏。

  3、镀锡中不含铅。

  4、接地电缆尽量用粗的线径,必须等于或大于规定标准,接地点尽量靠近变频器,接地线越短越好。


关键字:变频器  接线图  变频技术 引用地址:变频器原理与接线图

上一篇:变频器的作用和安装
下一篇:工业机器人中的减速器作用分析

推荐阅读最新更新时间:2024-11-03 20:18

使用通讯方式改变变频器参数方法浅谈
概述   在工业 自动化 场合,可编程序控制器与 变频器 的应用越来越广泛,传统的控制方式一般是使用 PLC 的数字输入输出端子接到变频器的输入输出端子,PLC的模拟量输入输出点控制变频器的模拟量输入输出,这种方式实际上占用了PLC宝贵的输入输出点,特别是模拟量接口,所费代价很大。随着PLC及变频器的发展,特别是通讯处理能力的扩展,目前一般的变频器都带有485通讯接口,而PLC的通讯功能也得到长足的发展,所以考虑使用PLC与变频器直接通过通讯方式连接,应该是比较经济的方法。问题是:众多的变频器厂家,由于技术和市场的原因,通讯协议五花八门,相互的兼容性很差。针对这种现状,日本光洋电子(KOYO)使用“无协议通讯”的技术很好的解决
[嵌入式]
交流变频调速技术详解
交流变频调速是近几十年来发展起来的新技术,以其卓越的调速性能、显著的节电效果以及在国民经济各领域的广泛适用性,而被公认是一种最有前途的调速方式。 变频技术 变频技术是一门能够将电信号的频率,按照具体电路的要求,而进行变换的应用型技术。 其主要类型有以下几种: 交—直变频技术(即整流技术) 直—直变频技术(即斩波技术) 直—交变频技术 (电子振荡,电力逆变) 交—交变频技术(即移相技术) 变频器 变频器是将固定频率的交流电变换成连续可调的交流电的装置。英文简称VVVF ( Variable Voltage VariableFrequency),可以是交-直-交,也可以是交-交变频技术。变频器的控制对象是三相交流异步电机和三
[嵌入式]
交流<font color='red'>变频</font>调速<font color='red'>技术</font>详解
单相转三相变频器的缺点
单相转三相变频器是一种将单相交流电转换为三相交流电的电力转换设备,广泛应用于工业自动化、电力系统、家用电器等领域。以下是单相转三相变频器的缺点介绍: 效率问题 单相转三相变频器在转换过程中,由于电能的转换和传输,会有一定的能量损失。这种能量损失主要表现在以下几个方面: 1.1 转换效率:单相转三相变频器在将单相电转换为三相电的过程中,由于电路的非线性特性,会导致一部分电能转化为热能,从而降低转换效率。 1.2 传输效率:在单相转三相变频器的输出端,三相电的传输过程中,由于线路的电阻和电感等因素,也会导致电能的损失,进一步降低传输效率。 1.3 谐波问题:单相转三相变频器在工作过程中,会产生一定量的谐波,这些谐波会对电网和设备产
[嵌入式]
西门子变频器参数设置方法探讨
近十多年来,随着大规模集成电路、计算机控制技术以及现代控制理论的发展,特别是矢量控制技术的应用,使得交流变频调速技术逐步具备了宽调速范围、高稳速精度、快动态响应,以及在四象限作可逆运行等良好的技术性能,调速特性可与直流电气传动相媲美。在交流调速技术中,由于变频调速的调速性能与可靠性等性能在不断完善,价格也在不断降低,特别是它的节电效果明显,实现交流电机调速极为方便,因此,在一切需要速度控制的场合,变频器以其操作方便、体积小、控制性能高而获得广泛的应用。 变频器 在使用中出现的一些问题,很多情况下都是因为变频器参数设置不当引起的。   440变频器可设置的参数有几千个,只有系统地、合适地、准确地设置参数才能充分利用变频器性能【1】。
[嵌入式]
功率器件在静止变频技术中的应用
  我国20世纪80年代以前的静止变频技术由于受到电力电子器件技术的影响,一直处于停滞不前的状态,各个行业感应加热用中频电源基本上使用中频变频电机供电。随着20世纪90年代初电力电子器件的发展,目前国内中频电机组正呈被淘汰的格局,静止变频设备开始大量使用,特别是在音频、超音频领域,表现更为明显。80年代、90年代,国内静止变频基本上采用晶闸管作为功率开关元件,工艺水平基本上以8KC为上限。到2000年,国内开始出现采用IGBT作为功率开关器件的变频技术,工作频率可达20KC,功率可达300KW。目前国内已出现50KC、100KW的全固态电源,可以说静止变频技术目前国内处于高速发展的阶段。    晶闸管的使用与保护   晶闸
[电源管理]
基于DSP+SPWM的变频器设计及实现
TMS320LF2407A芯片简介 TMS320LF2407A 是TI公司专为电机控制而设计的单片 DSP 控制器。它具有高性能的C2XLP内核,采用改进的哈佛结构,四级流水线操作,它不仅具备强大高速的运算能力,而且内部集成了丰富的电机控制外围部件,如事件管理器EVA、EVB各包括3个独立的双向定时器;支持产生可编程的死区控制PWM输出;4个捕获口中的2 个可直接连接来自光电编码器的正交编码脉冲;2个独立的10位8路A/D转换器可同时并行完成两个模拟输入的转换;片内的串行通信接口可用于与上位机通信;片内串行外设口用于与外设之间通信;40个可独立编程的复用I/O口可以选配成键盘输入和示波器显示的输入/输出口。这些为实现交流电机变频调
[嵌入式]
基于DSP+SPWM的<font color='red'>变频器</font>设计及实现
基于SPWM控制全数字单相变频器的设计及实现
本文介绍了基于DSPTMS320LF2407A并使用SPWM控制技术的全数字单相变频器的设计及实现方法,最后给出了实验波形。 常见的AC/DC/AC变频器,是对输出部分进行变频、变压调节,而且在多种逆变控制技术中,应用最广泛的一种逆变控制技术是正弦脉宽调制(SPWM)技术。在变频调速系统中,应用DSP作为控制芯片以实现数字化控制,它既提高了系统可靠性,又使系统的控制精度高、实时性强、硬件简单、软件编程容易,是变频调速系统中最有发展前景的研究方向之一。 TMS320LF2407A芯片简介 TMS320LF2407A 是TI公司专为电机控制而设计的单片DSP控制器。它具有高性能的C2XLP内核,采用改进的哈佛结构,四级流水线操作,它不
[电源管理]
基于SPWM控制全数字单相<font color='red'>变频器</font>的设计及实现
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
更多每日新闻

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved