功放机功率小,推动扬声器工作时,声音小没劲,若功放电路的电源变压器功率足够大,只是功放电路功率较小,此时可以通过更换大功率功放IC的方法来增加输出功率。
有些功放机的功放电路是采用TDA2030之类的功放IC构成的,它们的输出功率一般只有一二十瓦,若功放电路用的电源变压器功率余量足够大,此时可以采用TDA1521这类双声道功放IC接成BTL功放来代替原来的OCL功放,这样在供电电压不变时,功放电路的输出功率可以显著增大。像上图所示的由TDA1521构成的BTL功放电路,在±16V电源下,其最大输出功率可达30W。
若功放机是采用单电源供电,并且供电电压也不是很高,若想增大输出功率,此时可以采用上图所示的数字功放板来增大输出功率。这种数字功放板的优点是:单电源供电,效率高,体积小,输出功率大。只要功放机的电源功率能够满足要求,采用这种数字功放板可以显著增大功放的推动能力。
上图所示的数字功放板可以在8~24V电压范围内工作,在供电电压为+12V,RL为4Ω时,输出功率可达18Wx2。该数字功放板的接线方法如上图所示。
这里需要说一下,在功放电路的输出功率增大时,一般要求前级电路输出的音频信号幅度要足够大。若前级电路输出的音频信号幅度较小,可以增加一级由9014三极管或NE5532运放构成的音频放大电路,先将音频信号放大到足够的幅度,然后再送至功放电路的输入端进行放大。
关键字:功放机 功率 功放IC
引用地址:
如何增加功放机的功率
推荐阅读最新更新时间:2024-11-12 12:48
意法半导体氮化镓功率半导体PowerGaN系列首发
意法半导体氮化镓功率半导体PowerGaN系列首发,让电源能效更高、体积更纤薄 基于氮化镓 (GaN) 的产品可以取得更高的能效,帮助工程师设计出更紧凑的电源,适合各种消费、工业和汽车应用 意法半导体 PowerGaN系列第一款产品现已投产;很快还将推出其他的不同封装和规格的产品 2021年12月17日,中国 —— 服务多重电子应用领域的全球半导体领导者意法半导体(STMicroelectronics,简称ST;) 推出了一个新系列—— 氮化镓(GaN) 功率半导体。该系列产品属于意法半导体的STPOWER 产品组合,能够显著降低各种电子产品的能耗和尺寸。该系列的目标应用包括消费类电子产品的内置电源,例如,充电器、PC机外
[模拟电子]
浅析保护汽车逆变器设计中的功率晶体管的方案
随着油电混合车和电动车技术的演进,逆变器驱动技术已经进入汽车领域,从空调机和加热系统等低功率应用,一直到驱动和再生制动系统等高功率应用,所有这些系统的共通点是需要通过保护逆变器设计中的功率开关晶体管来最大限度地提高工作寿命。
汽车系统中的逆变器为电动机控制电源的关键部件,它可以把相对较低的直流电池电压转换成为交流高电压,其中使用功率开关来调节能量的递送,请参考图1。通过微控制器送出开关信号,并利用隔离门驱动器作为低电压微控制器和高电压功率开关间的接口。
许多新形态的功率开关,如碳化硅,都被评估是否可以使用于汽车逆变器中,但目前最具竞争力的还是IGBT。长久以来,这些功率晶体管已经被广泛应用于高电压和高功率的处理上,但在发展过
[嵌入式]
兼容USB功率电能快速电池充电管理方案
ADP5065是一款内嵌互联直流电压充电输出端与电池端的FET器件,通过FET可以实现电池隔离,当系统驱动电能来自于废电池或没有电池时,系统会立即切换到USB供电模式。ADP5065的输入电压范围为4V~5.5V,最大输入电压高达20V,不用担心USB总线断开或连接过程中的峰值。ADP5065充电器兼容USB2.0、USB3.0和USB电池充电规范1.1。ADP5065采用一个非常小的封装,20引脚WLCSP封装(0.5mm间距)。 ADP5065主要特性
3MHz开关模式充电器
图1 ADP5065设计原理图
1.25A专用充电器充电电流
最高680 mA的充电电流(500mA USB主
[嵌入式]
手机功率放大器的功率包络跟踪
您是否听到有人抱怨每天要为4G电话充电两次?很遗憾,他对自己的手机并不太满意。 随着人们对高速数据读写的需求与日俱增,而电池的容量却无法跟上通信技术前进的步伐,这种现象一直屡见不鲜。这并不是电池的问题,而是我们需要一种技术来使手机放大器变得更为强大。过去普遍采用普通的DC-DC转换器来控制手机电池电量流入不同的芯片。 这包括将手机信号驱动回基站的功率放大器(PA),对于2G和3G信号,由于峰均功率比(PAPR)相对较小,该功率放大器可以很好地工作。但随着技术从GSM发展到GPRS、WCDMA直至HSPA,PAPR也大幅升高。现在LTE或4G具有非常高的PAPR,极大影响了手机的耗电量。图1显示的是基于设备电池特定功率输入的典型P
[测试测量]
使用测试仪器测量太阳能电池的功率输出
序言 太阳能产业的成长增加了对太阳能电池(及太阳能模组)测试和测量解决方案的需求,而且随着太阳能电池尺寸的增大和效率的提高,电池测试需要运用更大的电流和更高的功率水平,这就要求采用更加灵活的测试设备。 典型测量 测试较小的单个电池时,这些最大电流和功率是可接受的,但是随着电池技术向更高的效率、更大的电流密度和更大的电池尺寸推进,电池的功率输出将很快会超出这些四象限电源的最大额定值太阳能模组的输出通常会超过50W,而且可能会爬升至300W或更高,这意味着许多针对模组的测试都无法使用四象限电源来完成。 在这些情况下,工程师应当借助于现成的电子负载、直流电源、DMM和数据采集设备,包括温度测量、扫描、转换和数据记录设备,以便在宽
[测试测量]
面向手机的DC-DC转换器用绕线型功率电感
前言
手机、便携音乐播放器、便携式游戏机、笔记本电脑等各种便携式电子产品存在于我们的日常生活中。这些便携式电子产品由电池供电,各个机器内部都装载着多个电源电压转换电路(DC-DC转换器),能够将电池电压转换成功能模块所需要的电压。
DC-DC转换器有多种类型,用于便携型电子设备的则是以非绝缘型转换电源为主。这种非绝缘型转换电源有使用线圈的断路器式和以电容器为主体的供给泵式。例如主要用于便携设备的锂电池,电池电压会变化,而供给泵式的DC-DC转换器由于可以很好维持电池电压变化时的功率高转换效率而被广泛应用。
便携型电子设备所必需的电源类型根据机器的不同种类和功能而有着很大的不同,因此DC-DC转换器的输入输出电压电流规格
[电源管理]
东微半导:专注底层结构创新,有望成长为国产高性能功率半导体领航者
4月21日及4月27日,东微半导先后发布2021年年度报告以及2022年第一季度业绩报告。报告显示,公司长期受益于功率半导体功率器件领域的高景气,下游需求旺盛,2021年公司实现营业收入7.82亿元,同比增长153.28%;归属于上市公司股东的净利润约1.47亿元,同比增长430.66%;归属于上市公司股东的扣非净利润1.41亿元,同比增长588.67%;综合毛利率28.72%,同比增长10.87%;基本每股收益2.91元,同比增长385%。 今年第一季度,东微半导经营业绩持续高速增长,实现营业收入2.06亿元,同比增长45.50%;归属于上市公司股东的净利润4774.33万元,同比增长129.98%;归属于上市公司股东的扣非净
[手机便携]
如何优化大功率直流充电桩设计?
充电时间是消费者和企业评估购买电动汽车 (EV)的一个主要考虑因素。为了缩短充电时间,业界正转向采用直流充电桩 (DCFC) 。DCFC 绕过电动汽车的车载充电器,直接向电池提供更高的功率,从而大大缩短充电时间。 为了实现更快的充电速度、适配更高的电动汽车电池电压并提高整体能效,DCFC 必须在更高的电压和功率水平下运行。这给 OEM 带来了挑战,必须设计出一种能够优化效率,同时不影响可靠性和安全性的架构。 DCFC 集成了多种器件,包括用于辅助电源、感测、电源管理、连接和通信的器件。另外,为了满足各种电动汽车不断发展的充电需求,必须采用灵活的制造方法,这也使设计变得更加复杂。 图 1. DCFC 中的主要模块概览 快
[嵌入式]