采用分而治之的方法设计嵌入式系统

发布者:RadiantExplorer最新更新时间:2007-08-21 来源: 嵌入式在线关键字:周期  解码  像素  音频 手机看文章 扫描二维码
随时随地手机看文章
其中有一个很明显的发展趋势:将复杂的问题分为若干个较小、较简单且更加明确的问题,并针对具体的任务运用合适的工具。即使是最为普通的嵌入式系统也适用于这一原则,它可以缩短设计周期,提高系统的灵活性和可维护性。关键在于采用一种通用的通信策略。

主控制器和从控制器

最基本的原理就是:用主控制器进行集中决策,再交由从控制器分别执行。在最为复杂的系统中,这种方法必不可少,并能够自动执行。比如,手机中的主处理器用于决定屏幕的显示内容以及外设(如LCD显示控制器或无线电收发器)需要完成的工作,而不会直接控制显示的各个像素或是无线电的编/解码。主控制器将告知显示器需要显示什么信息,并由显示器来决定如何显示;同样,主控制器向收发器提供需要编码的音频信号,而收发器则提供解码后的信号。

在其他嵌入式系统中,任务的划分或许不那么明显,但基本思想都是相同的。如果一个中央主控制器能够与远程从设备以及本地设备进行通信,那么整个系统中就可以有统一的控制。另外,为了使一个分布式系统获得成功,需要对接口作明确的定义。

虽然微控制器有许多标准的通信方法,但在主/从嵌入式系统中,最常用的是RS23 2串行接口、SPI和I2C。采用这些通信接口的从设备包括较低级的ADC、DAC、串行EEPROM、各类数字I/O,以及较高级的电压排序和监控器件以及闭环风扇控制器等。

将任务分而治之

在目前嵌入式市场的从器件以及可被用作主控制器或定制从控制器的微控制器中,比较流行的通信方法是I2C。这主要是由于I2C价格较低,只需双线/引脚和两个上拉电阻器即可构成,并且简单易用。就分布式嵌入系统而言,I2C(400kHz)往往是最佳选择。

将任务分而治之的关键在于:简单的问题要比复杂的问题更加容易解决。此外,将器件彼此分开可以减少它们之间的耦合,并提高系统的可靠性。如果能够正确地分配功能、定义接口,就可以避免普遍存在的一些故障。最后,如果能够很好地利用自己的经验,则在划分任务的过程中就将能产生许多可重用的设计,从而使得工程师在设计下一个项目时不用从头开始。

实现任务的分而治之需要依靠一根通信总线,在有些情况下,总线会影响到某些主控制器/从控制器的特性。在本文中使用I2C作为总线,是因为支持该总线的器件比较普遍,而且测试和调试I2C所需的外部工具价格较低或比较容易创建。

这种主控制器/从控制器的原理在任何嵌入式设计中都是以相同的方法来处理的。首先,确定需要集中做出那些决策,并将它们分配给主控制器;然后把具体操作分配给从控制器去执行。关键在于如何进行任务的划分。一种高效的策略是:不要让主控制器因为任何事情而去等待某个从控制器;如果从控制器需要主控制器提供某些信息,它必须先呼叫主控制器。在有些情况下,这种方法还需要一根中断线,以使从控制器能够呼叫主控制器。

采用I2C I/O扩展器件的面板控制器

本文在一个控制设备面板的系统中采用了该方法,面板由按钮、开关和LED组成。在该面板系统中,主控制器是负责管理该系统的主处理器,如嵌入式的Windows或Linux计算机;从控制器为I2C总线连接I/O扩展器。

通过让主处理器在上电时对I/O扩展器进行配置,按钮/开关检测输入和LED状态输出将被传至主处理器。任何一个具有I2C总线的处理器都可以是主控制器,它对设备进行软件配置,并可以方便地改变按钮和LED的配置。

这种简单的系统如图1所示。图中蓝色的圆圈代表按钮输入,红色和绿色形状代表LED。在设计中使用了两个小的I2C I/O扩展器,是为了实现智能设计的模块化,把输入子系统的变化与输出子系统分隔开。当在主控制器中进行决策时,可使某一特定功能的变化不影响到其他的功能。

图1 面板系统简图

而且,由于所有的控制功能都由主控制器完成,因此系统中的硬件部分很简单,而且易于改变。但这种简单的方法也有缺点,当希望增加一个用于调节LED亮度的环境光传感器时,增加的工作负担将全部由主控制器来承担,它要保证所有的从控制器能够适应设计变化,并正常工作。但其实主控器只需要知道按钮的状态,并控制LED的接通和关断。

设计定制的I2C从控制器件

在图1的系统中,所有的逻辑信息都存储在主控制器中,一切变化都要通过主控制器完成。作为替代方案,可以定义一个面板接口,并将所有的细节问题交给一个分布式的从控制器系统来处理,这样可减少主处理器的负担,如图2所示。

图2 采用定制从器件的面板系统

设计定制器件时应采用定义了稳定协议和接口且经过验证的I2C从控制器实现方案,最常用的协议是目前大多数I2C从控制器件所采用的、基于寄存器的协议。相关概要信息如下:

对于I2C,所有的事务处理均由主控制器启动;

每个从器件都具有一个I2C 7位地址(最低有效位表明事务处理是“读”还是“写”);

每个从器件都具有一个内部地址寄存器,用于存储一个指向包含了数据、命令或状态信息的内部表指针;

每个从器件均定义了其寄存器的地址及其功能,指明它们是只读型的还是读/写型的;

一个写处理事务由一个具有I2C器件7位地址和写操作位的字节以及一个位于其后的、用于设定内部地址寄存器的字节组成,如果在处理事务中有更多的字节,则它们将被写入以新设定的内部地址为起点的从器件;

一个读处理事务由一个具有I2C器件7位地址和读操作位的字节以及一个位于其后的主控制器组成,该主控制器用于记录从器件的字节数,并在结束时提供停止信号。由此可见,I2C从控制器与双端口RAM很相似,非常易于使用。

接下来要选择可编程器件,赛普拉斯公司推出的微控制器件PSoC拥有处理大多数I2C从控制器所需的全部功能,并提供了一种易用的工具,从而简化了增加I2C从控制器的工作,只需“拖、放、选择地址”即可。

首先,定义一个按钮输入的从器件,创建一个具有3个地址引脚和7个按钮输入的器件,并通过配置使之接受一个靠近5V直流系统电源的 常开开关。按钮状态将在一个由I2C主控制器进行存取的单字节中提供。

其次,定义用于控制LED的从器件,创建一个具有2个地址引脚并能够以10mA的电流来驱动8个LED(分为4红4绿)的器件。定义被称为“Command”的单字节用于执行I2C的命令输入,以控制LED。该字节的4个低位用于控制红光LED,而4个高位则负责控制绿光LED。

接下来,还可以更加细致地定义定制I2C主控制器/从控制器的接口,进一步实现从控制级的客户化设计。如果想把系统主控制器从一个轮询器件变为一个接收报警信号的中断器件时,则可以给按钮输入设备增加一根输出线。这些改动能够进一步地把主系统处理器与低级设备相隔离,并提供了在不影响主系统的情况下继续改善子系统的更大灵活性。

将分而治之的概念推广到所有的通信总线

本文所讨论和说明的概念可适用于任何的总线类型,需要做的是定义满足各种不同需要的协议,以最大限度地缩短无线、便携系统中的传输时间,或是在苛刻的工业环境中实现完善的检错/纠错。

主控制器可以被称为集线器,从控制器可以被看作一个节点并具有预定的响应时间,但是,分而治之的思想仍然适用:把普通、重复的测量和低级控制分配给级别最低的点,而将重要的工作留给系统控制器来完成。另外,在各种情况下都必须建立功能强大、精确定义的接口,以便为下一级的设计留出一定的自由度,在不影响较高级设备的情况下方便地改变设计方案。

关键字:周期  解码  像素  音频 引用地址:采用分而治之的方法设计嵌入式系统

上一篇:多核与多执行绪的嵌入式系统解决方案
下一篇:基于RVM的层次化SoC芯片平台的设计及应用

推荐阅读最新更新时间:2024-05-02 20:37

三大主流高清视频编解码技术浅析
众所周知, 高清视频 相对于rmvb、DVD等标清视频,播放起来对于电脑硬件要求的提升是无疑的。 一、下面我们先来看看高清视频究竟从哪些方面提升了要求: (一)首先便是视频流量的加大。这是最为直观的一个提升元素,我们可以参照下面的表格,表格中只是简单的提出了“视频源”的流量对比,但其实高清视频的“不同格式”更决定了流量的不同。 可以看出,DVD视频的数据流量只有约9.5Mb/s,但是最高的蓝光可以达到40Mb/s以上,提升了4倍以上,无疑这是硬件配置提升的一个主要原因,因为需要处理的数据量增大了很多。 (二)其次便是编码格式的复杂度。我们知道每种编码格式都有其自身的算法,优秀的算法可以将视频压缩到更小的体积,但是还原这种算法却
[嵌入式]
片上总线Wishbone 学习(九)总线周期之单次写操作
异步周期结束方式                           单次写操作如图1所示。           在时钟上升沿0,主设备将地址信号ADR_O()、TGA_O()放到总线上,将数据信号DAT_O()、TGD_O()放到总线上,将WE_O置高表示写操作,将适当的SEL_O()信号置高通知从设备数据总线DAT_O()的哪些信号是有效的,将CYC_O和TGC_O置高表示操作正在进行,将STB_O置高表示操作开始。                     在时钟上升沿1到达之前,从设备检测到主设备发起的操作,将主设备的ACK_I置高作为对主设备STB_O的响应。                 
[嵌入式]
瞄准蓝牙音频市场,CEVA高集成无线音频平台Bluebud问市
CEVA,全球领先的无线连接和智能传感技术的授权许可厂商(NASDAQ:CEVA)宣布推出高度集成的无线音频平台Bluebud™,推动支持DSP的蓝牙音频IP标准化,适用于快速发展的蓝牙音频市场,包括真无线立体声(TWS)耳塞,可听设备,无线扬声器,游戏耳机,智能手表和其他可穿戴设备。预计未来几年蓝牙音频市场将会加速增长,市场研究机构ABI Research预测,到2024年每年将有近20亿台设备出货。 Bluebud平台解决了半导体和系统公司在开发无线音频系统时面临的技术复杂性和专业知识匮乏问题。该平台提供了标准化的且独立的解决方案,瞄准利润丰厚的蓝牙音频市场的企业能够高效地采用其系统级芯片(SoC)设计,从而大大减低高准入
[嵌入式]
瞄准蓝牙<font color='red'>音频</font>市场,CEVA高集成无线<font color='red'>音频</font>平台Bluebud问市
51汇编模拟PT2272解码程序
;软件解码程序(仿真PT2272) ;晶体频率为11.0592Mhz ;本程序中的时间定位关系只适用于接3.3M振荡电阻的PT2262解码 ;使用其它阻值电阻时,应将定位时间按电阻比例缩放 ;下面的程序中 REM 为信号输入端 ;RECEIVE 检测到有效信号标志位 ;ENABLE_DETE 连续按键标志 ;3AH,3BH用作定时器 ;PT2262共12根地址线 ;31H,32H:接收的前8 位地址编码 ;33H,30H:接收的后4 位地址编码(若最后4位用作数据端,则只须读第33H单元的内容即可) ;当用作数据端时,PT2262对应脚悬空被认为是低电平。 ;地址
[单片机]
1亿像素?坚果手机实拍样张曝光:相机或重大升级
即将到来的10月对于手机圈来说意义重大,这个月我们不仅能看到苹果首款5G手机iPhone 12,还将迎来华为高端机Mate 40系列。   除此之外,憋了一年大招的新一代坚果手机也即将与大家见面,已知爆料显示,该机不仅有纯白色版本,还将在交互体验方面的重大创新,让手机不只是手机。   随着坚果新机发布的临近,字节跳动新石实验室总裁吴德周,Smartisan产品经理海舟近日频频在微博曝光新机的线索,吊足了网友的胃口。   昨天下午,朱海舟在微博发布一张疑似坚果新机的实拍样张,附文:“武汉的这一场冷雨,让秋天来得早了好多。试问卷帘人,却道海棠依旧。 ”微博小尾巴显示为”Smartisan”,引发粉丝纷纷猜测:“这肯定不是pr
[手机便携]
解决高清音频IC设计难题
视频流和图像绘制技术的进步,极大地提高了高清 (HD) 运动图像的质量。加上家庭娱乐中心逐渐流行,这些因素已成为追求“家庭影院”体验以及便携式电子设备发展的重要推动力。除了高清视频之外,高清音频(HD Audio)也随之引入,为日益扩大的多媒体娱乐世界增加更丰富的音频体验。本文将对高清音频市场的三大领域予以介绍,即   ● 数字电视–DTV   ● 机顶盒–STB   ● 蓝光DVD   根据最新报道,预计到2011年,DTV、机顶盒和蓝光DVD的销售量将分别达到1.87亿、1.6亿及1.16亿台。除此之外,A/V接收器、高清便携式摄像机、IPTV及手机等其他市场领域也将大幅增长。   不过,在处理要求、音频声道、比特率和精
[模拟电子]
解决高清<font color='red'>音频</font>IC设计难题
Fraunhofer IIS展示MPEG-H音频端到端解决方案 抢占4K电视先机
北京——CCBN 2号馆,2403展位,世界领先的音频及媒体技术研究机构Fraunhofer IIS在2019年中国国际广播电视信息网络展览会(CCBN)上携手全球合作伙伴联袂展示了MPEG-H音频端到端解决方案:三维声直播制作工具(实时元数据生成与监听设备)、编码器、三维声后期制作工具 (DAW)以及支持MPEG-H解码的家庭还放设备(3D条形音箱)。 近来,广电总局和工信部先后出台三维声规范要求文件,为行业发展提供了方向也激励着4K超高清电视技术和三维声标准体系的建设和整个产业链的加速落地与实施,4K超高清频道相继开播。2017年初,Fraunhofer IIS积极参与到中国三维声标准提案工作中,并于2018年CCBN期间
[嵌入式]
基于KA2209的1瓦立体声音频放大器电路图
上图是基于 KA2209 的 1 瓦立体声音频放大器,可用于小型电子设备,如收音机、智能手机、平板电脑或其他需要很少声音放大的小工具 这是该 IC 在立体声模式下的教科书电路。它非常适合电池供电操作。功率输出主要取决于扬声器电阻和电源电压。在 3V 电压下,4 欧姆扬声器的功率为 0.1W。在 6V 电压下,4 欧姆扬声器的功率为 0.65W。 9V 时超过 1W。 该立体声放大器模块采用三星KA2209 8针IC。该IC可用TDA2822替代。它专为便携式盒式播放器和收音机而设计。它具有 1.8V 至 9V 的宽工作电源电压,因此适合电池供电。 组件清单: R3, R4 : 4R7 黄紫金 R1, R2 : 10K
[嵌入式]
基于KA2209的1瓦立体声<font color='red'>音频</font>放大器电路图
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved