利用频谱分析来限制RF功率和寄生噪声辐射

发布者:Xinmei最新更新时间:2011-02-24 来源: 电子工程专辑关键字:频谱分析  RF功率  寄生噪声  辐射 手机看文章 扫描二维码
随时随地手机看文章

射频功率的频域测量是利用频谱和矢量信号分析仪所进行的最基本的测量。这类系统必须符合有关标准对功率传输和寄生噪声辐射的限制,还要配有合适的测量技术来避免误差。

像频率范围、中心频率、分辨带宽(RBW)和测量时间这些有关频率的关键控制都会影响测量结果。

频率范围指的是分析仪所能捕获的总频谱分量,而中心频率相当于频率范围的中心。应该注意像频率范围这类频率控制决定了仪器前面板上的频率范围。另一方面,根据频率范围的大小不同,FFT信号分析仪有两个截然不同的采集模式。

仪器中高达RBW的频率范围的实现方式是:对一段频率进行下变频,然后对下变频信号进行数字化。而对于超出RBW的频率范围,按顺序对频谱段进行变频和数字化。RBW控制频率轴上的频率分辨率。在传统的分析仪中,利用一个窄带滤波器来扫描频率范围来实现频谱显示。滤波器带宽决定了频率轴上的分辨率,因此也是控制的标志。

与此同时,采用FFT的分析仪没有模拟滤波器,而是采用FFT和相关的窗口参数(windowingparameter)来确定频率分辨率或者RBW。与传统的频谱分析仪不一样,目前最新的采用FFT的分析仪可以选择窗口来限制频谱泄漏并改善频域中间隔较小频段的分辨率。那些对FFT分析仪以及FFT熟悉的人们也许会问,RBW频率分辨率与FFT的抽头的宽度是什么关系?表1显示了在新型的RF信号分析仪中RBW频率分辨率参数(规定在3dB和6dB处的RBW分辨率)与FFT抽头宽度的关系。

表1:RBW频率分析分辨率与FFT分析仪的抽头宽度相关

采用FFT的分析仪具有窗口选择,用来限制频谱泄漏并改善频域中间隔较小频谱的分辨率。而传统的频谱分析仪则没有这一功能。传统扫描式分析仪的测量时间(或扫描时间)与RBW的平方成反比,这是由模拟滤波器的建立时间确定的。如果要通过降低RBW来改善频率分辨率,则扫描时间要呈指数增加。

相反,随着RBW的降低,FFT信号分析仪所进行的采集更长,运算量也更大。随着DSP器件速度的加快,测量速度更快,从而实现更高的分辨率或更窄的RBW测量。

图1:频谱分析仪测量结果的频率和幅度关系

幅度设置

不同的幅度控制也会影响测量结果,这些包括参考电平(reflevel),衰减器设置和检测模式。参考电平设置了频谱分析仪的最大输入范围。它控制Y轴,这一点与示波器上的“volts/div”相似,必须将其设置到刚刚大于所期望的最大功率测量值。

最佳参考电平的取值要使得最小的仪器失真(使输入信号饱和的非常低的参考电平导致)和最小的噪声基底(参考电平过高,减小了仪器的灵敏度和动态范围而导致)取得平衡。有时候,设置一个低参考电平对于宽带噪声测量是有好处的,尽管产生一些仪器失真。当能够认可失真时,这样做会改善仪器的灵敏度,并且保证在测量中将其排除在外。

衰减器设置控制也决定仪器的输入范围。该设置通常被设置到自动模式,软件根据参考电平来调整衰减器的值。

在固件中,频谱分析仪将显示器的Y轴与参考电平或衰减器联动在一起。虚拟仪器则没有限制,如果需要时,显示器的Y轴可以与这些控制相脱离。该功能可以实现频谱的可视化缩放,而不影响仪器的幅度设置。注意,参考电平和衰减器设置都影响可编程衰减器,故只需设置其中的一个即可。

检测模式是另一种幅度控制方式,可用于传统的扫描频谱分析仪,但不能用于基于FFT的分析仪。可分为普通、峰值、采样或负峰值等模式,具体检测模式决定了频谱分析仪如何减

少频谱信息的,或者说如何压缩频谱信息。

另外它还影响总的功率测量。当频谱数据点超过频谱分析仪所能显示的点数时,分析仪将从数据减少策略中获益。这将使检测模式改变功率测量。

表2:频谱分析仪测量模式能够影响功率测量结果

影响精度的因素

频谱分析仪采用起始和终止频率之间的频率扫描。一个模拟斜坡信号产生该频率扫描信号,而起始频率由来自高精度的时间基准信号合成。于是,测量精度由模拟斜坡信号和IF滤波器的中心频率所决定。

基于FFT的分析仪,没有这样的模拟斜坡信号,故没有这些因素的限制,从而在整个测量范围内具有一致的精度。范围内的精度则取决于时基和测量算法,故可以比较容易地获得频率精度和重复性。

在传统型扫描分析仪中,频率误差的原因包括基准频率误差,频率范围精度(范围的5%)和RBW(RBW的15%)。相应地,在基于FFT的分析仪中的频率误差则包括基准频率误差和RBW,具体取决于测量算法,变化范围为RBW的>50%到<10%之间。

为了比较这些误差,就必须忽略基准频率误差,这是因为可以使用一个像铷时钟这类的精密频率源来对其进行补偿。在扫频式频谱分析仪中,当频率范围大于50kHz以及RBW设置超过1kHz时,测量性能将受到影响,除非采用最优化的技术,例如将100MHz的频率放置到频率范围的中心。

如果采用较小的RBW,意味着测试时间的拉长,这是因为扫描时间的问题,因为通常的频谱分析仪中需要150-200ms的扫描时间。测量算法限定了基于FFT的分析仪的测量精度。例如,先进的光谱测量分析工具包中采用了内插技术,可实现比RBW能够实现的更高分辨率,就像上述的例子中,RBW设置到2kHz将会保证更高的精度。

基于FFT的分析仪采用可以实现精确测量的高RBW设置,即便是没有利用精度优化的测量技术。这意味着在相同的测试时间内可以实现更快和更精密的测量。信号分析仪能够执行长度小于20ms的测试样本,这比频谱分析仪高6倍。

除非采用了合适的测量设置,否则即便是对于同一台测试仪器,也会导致的测量结果很大变化。因此,深入理解工作原理对正确地设置测量仪器来说是至关重要的。

关键字:频谱分析  RF功率  寄生噪声  辐射 引用地址:利用频谱分析来限制RF功率和寄生噪声辐射

上一篇:智能卡安全数据传输组合模式过程
下一篇:3月1日起南京启用射频识别机动车环保卡

推荐阅读最新更新时间:2024-05-07 16:17

使用实时频谱分析仪有效地解决无线系统中的干扰问题
在当今日益拥挤的无线频谱中,干扰变得越来越普遍和严重。鉴于许多无线信号的复杂性和动态性,需要同样动态的测量工具来有效地对部署的系统进行故障排除和维护。 一种这样的工具是实时频谱分析仪 (RTSA) 功能,它提供高速、无间隙测量和各种信息显示模式。将这些功能添加到手持式频谱分析仪或组合分析仪后,现场人员可以使用一台仪器来检测、定位和解决同频干扰和上行干扰等问题。数字信号处理 (DSP) 和模数转换器 (ADC) 的不断进步使 RTSA 触手可及。 查看常见的干扰问题 任何类型的干扰都会对服务质量和体验质量等性能指标产生深远影响。幸运的是,故障排除人员可以专注于通常会导致无线系统出现问题的几种干扰类型。相对于信号交互,干扰可能是
[测试测量]
使用实时<font color='red'>频谱分析</font>仪有效地解决无线系统中的干扰问题
功率便携式音频产品(含Charger 和DC-DC)的辐射发射超标对策
1. 便携式音频产品电源系统介绍 1.1 背景 实际的产品开发中,便携式产品的 EMI 测试是用适配器给产品充电,有其他外接设备连接也需要在测试时接上。下面以一个实际产品的开发为例,说明这类产品设计的 EMI 设计要注意的问题,以及遇到辐射发射超标,如何来分析问题产生的原因。并找出解决问题的办法。 1.2 音频产品供电回路 如下图 1 是一个 Audio 产品的电源部分的原理图,这个产品有一个 charger 芯片 BQ24133,在这个应用中设置最大充电电流 2A。有一个 Boost 芯片 LM3478,把电池电压升压到 10V 给 Audio 芯片供电,满载电流 1A,另外一个 Boost 芯片 LM3478,把电池电
[电源管理]
小<font color='red'>功率</font>便携式音频产品(含Charger 和DC-DC)的<font color='red'>辐射</font>发射超标对策
使用频谱分析仪执行低成本EMI预一致性测试的案例分析
频谱分析仪测试一致性测试通常作为产品投产前设计质保的一部分完成。一致性测试内容繁多,耗时长,如果在产品开发的这个阶段EMC 测试失败,那么会要求重新设计,不仅成本高昂,而且会耽误产品推出。 执行预一致性测试可以帮助您在把产品送到正式测试前发现不符合规范的情况。泰克基于USB接口的RSA306实时频谱分析仪的问世,预一致性测试变得前所未有的简便和经济,放射辐射测量和传导辐射测量可以帮助您最大限度地减少产品通过EMI 认证所需的费用和时间。本文将用两个实测案例,分析基于RSA306实现放射辐射和传导辐射的测试方法。 频谱分析仪测试放射辐射测量案例分析 在我们的预一致性测试中,我们使用了一米和几厘米两种距离。降低DUT(被测设备
[测试测量]
使用<font color='red'>频谱分析</font>仪执行低成本EMI预一致性测试的案例分析
埃赋隆推出400W坚固耐用的Doherty射频功率晶体管
埃赋隆推出400W坚固耐用的Doherty射频功率晶体管,据此扩展LDMOS基站和多载波产品线 荷兰奈梅亨,2021年10月27日 - 埃赋隆半导体(Ampleon)今天宣布推出BLC10G27XS-400AVT 400W非对称Doherty射频功率晶体管。此Doherty晶体管专为在2.496GHz至2.690GHz频率范围内工作的基站多载波应用而设计,其采用了埃赋隆备受业界推崇的第9代28V LDMOS工艺技术。该Doherty晶体管采用气腔塑料(ACP)无耳SOT-1258-4封装制造,通常可提供45%的漏极效率。 BLC10G27XS-400AVT具有出色的坚固特性,VSWR高达10:1,这对于经常发生大功率
[物联网]
埃赋隆推出400W坚固耐用的Doherty<font color='red'>射频</font><font color='red'>功率</font>晶体管
CD4040手机电磁辐射演示实验电路
手机在使用过程中都向外辐射电磁波。尤其是GSM制式的手机,辐射信号更强。本电路可以演示手机在使用过程中电磁辐射状况。 1.电路介绍 电路图如下图所示电路由手机信号接收及整形、脉冲计数及显示、自动清零、声音提醒等4部分组成。 2.电路分析 高频三极管T1对天线接收到的手机电磁辐射信号进行放大、检波,然后输出到CD4069组成的整形电路变成脉冲信号,输出到4040计数器。T1宜选用高频管C3355.用9018也可以。三极管工作点的稳定由直流反馈电阻R1、R2提供;为了保证放大倍数,电容C2将反馈信号中的交流成分旁路。检波后的手机信号由CD4069的非门1组成的线性放大电路放大。 在没有接收到手机的电磁辐射信号时,CD4069非门2的1
[电源管理]
CD4040手机电磁<font color='red'>辐射</font>演示实验电路
频谱分析仪维修--N9030A开机报错故障案例
一、故障现象: 10db及以上衰减功率不准;开机报错Error finding operating system, operating system not found 二、检测过程 收到仪器后首先确定仪器是否已经过了原厂质保,经查询该台仪器已经过保。开机提示error load operating system。经检测,仪器硬盘损坏,造成开机不进入系统;开机后自检报错,两个衰减器损坏,造成功率测量超差;YTF损坏,造成3G以上测量低5-10dB。 三、维修过程 维修:更换硬盘,重新安装固件,恢复系统;更换两组衰减器组件,更换YTF组件。
[测试测量]
<font color='red'>频谱分析</font>仪维修--N9030A开机报错故障案例
采用DC/DC转换器提高射频功率放大器系统效率
从功率预算的角度而言,直接由电池供电的射频功率放大器(RF PA)是需要重点考虑的元件。本文讲述一种通过DC/DC转换器提供高效RF PA射频功率放大器系统电源管理的方案。   随着蜂窝标准的不断发展,传输速率已从CDMA-1标准中的14.4kbps发展到CDMA2000/WCDMA标准中的2Mbps。此外,为了增加从每个用户获得的平均收入,蜂窝通信运营商已开始增加与3G电话相关的服务。同时,通话时间和电池寿命也期望采用具有同样或稍高一些容量的电池来获得提高。这使得系统设计更富有挑战性。系统设计师必须非常谨慎,对手机电路板上每一个元件的功率进行考察。从功率预算的角度而言,直接由电池供电的射频功率放大器(RF PA)是需要重点考
[模拟电子]
采用DC/DC转换器提高<font color='red'>射频</font><font color='red'>功率</font>放大器系统效率
Aeroflex收购韩国LIGNex1频谱分析仪生产线
Aeroflex Holding Corp.旗下的全资子公司 Aeroflex Limited 宣佈,已签署一项收购LIGNex1 Co., Ltd.频谱分析仪生產线的协议。主要收购内容包括 Aeroflex 将以自有品牌供应的bench-top频谱分析仪产品线。这些產品包括 2399C, 2394A, 2395A 频谱分析仪,以及新型 3250 系列频谱分析仪,还有相关知识产权。交易之完成将依LIGNex1交付条件及特定惯例成交条件而定。 LIGNex1 Co., Ltd.的主要业务是开发并生產多种精密电子系统,包括导弹、水底武器系统、雷达、电子战、航空电子,战略通讯系统,消防控制系统,海军作战系统和光电。该公司除為韩
[测试测量]
小广播
最新网络通信文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved