基于TMS32OF2812 DSP的双足机器人样机设计

发布者:美人如玉剑如虹最新更新时间:2009-12-17 来源: 电子科技关键字:双足不行机器人  TMS320F2812  陀螺仪 手机看文章 扫描二维码
随时随地手机看文章

0 引言

    双足机器人样机是研究双足行走的实验对象,为了研究的顺利进行,必须对机器人的自由度、驱动方式、重量、高度等进行合适的配置;这就需要自由度的分配简单合理、驱动方案可靠易用以及机械结构轻便结实。为了得到可靠高效的控制系统,首先要选择合适的主控芯片,然后针对实时控制中所需要的各种姿态信息,选择可靠性高且方便和主控芯片连接的传感器。

    双足步行机器人是一个多自由度、非线性、具有复杂动力学特性的多体系统,本田公司、索尼公司以及北京理工大学等相继推出了各自研制的双足机器人样机,其中以本田公司的ASIM0制作水平最高。本文在参考国内外相关研究的基础上,从便于实现的角度出发,设计研制了样机,以TI公司的DSP TMS320F2812为核心设计了机器人驱动、控制电路,分别采用了触力传感器FSSl500NST、微机械陀螺仪ADXRSl50来检测足底接触力信息和躯干角速度,并成功实现了机器人的稳定行走。

1 机械设计

    为了实现机器人前后行走、上下台阶及爬斜坡等功能,机器人每条腿至少应有三个俯仰自由度;要实现质心在左右脚之间转移的功能,每条腿至少应有一个滚转自由度。基于实现预期功能而又尽量降低成本,精简机构的原则,我们设计的双足机器人共有十个自由度,每条腿各有五个自由度,其中髋关节两个(俯仰和滚转),膝关节一个(俯仰),踝关节两个(俯仰和滚转)。这个十自由度的双足机器人可以实现左右方向和前后方向上的多种运动。

    考虑到驱动负载以及稳定性等因素,在设计时将腿长取为28cm,其中大腿有效长度(髋部俯仰方向舵机输出轴到膝盖舵机输出轴的距离)为15cm,小腿有效长度(膝盖舵机输出轴到踝部俯仰方向舵机输出轴的距离)13cm,每个脚底板宽8cm,长12cm,材料为2mm厚的电路板,上面安装了四个触力传感器,每个角上一个,用于检测机器人行走时支撑脚和地面之间的压力;电路板上还有四个传感器的信号调理电路。大腿和小腿都由轻质铝合金板加工而成;两条腿最上面的舵机通过u型件连在一根角铝上,用螺栓螺母拧紧后,就构成了机器人的骨盆,在骨盆中央竖直方向上固定一根硬铝板条,作为机器人的脊柱;电路板和为整个系统供电的锂电池可以放在一个特制的盒子里,将盒子固连在竖直板条上,就构成了机器人的胸腹。

2 驱动方案与控制系统设计

    基于处理能力等多方面的考虑,我们选用TI公司的高性能数字信号处理器TMS320F2812为机器人控制系统的核心,来完成信号采集、处理、控制和驱动等功能。

    F2812是一种低功耗的32位定点数字信号处理器,在数字控制领域应用广泛,采用哈佛总线结构,具有强大的计算能力、迅速的中断响应和处理以及统一的寄存器编程模式。

2.1 驱动方案

    考虑到驱动力大小以及可控性能,本机器人的关节采用汉库HGl4舵机进行驱动,该舵机采用闭环反馈位置控制,其部分技术指标如表1所示:

    减速齿轮组由马达驱动,其终端(输出端)带动一个线性的比例电位器进行位置检测,该电位器把转角坐标转换为一比例电压反馈给控制单元,控制单元将其与输入的控制脉冲信号比较,产生纠正脉冲,并驱动马达正向或反向地转动,使齿轮组的输出位置与期望值相符,从而达到舵机精确定位的目的。

    舵机的控制信号是脉冲位置调制(PPM)信号,是一种宽度可调的周期性方波脉冲信号,周期一般为20ms,当方波的脉冲宽度改变时,舵机转轴的角度发生变化,角度变化与脉冲宽度的变化成正比。一般舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用图1表示。

    由于制作工艺等多方面的原因,舵机的输出轴转角并不是准确地遵循与控制信号的脉冲宽度对应的关系,但一般和控制信号脉冲宽度成比例关系。为了减小误差,我们事先测出在额定脉宽下舵机的实际转角,然后计算出和额定转角的比例系数,在软件中对控制信号脉宽予以调整,这样可以将转角误差减小到0.5°以内。

2.2 控制系统设计

    TMS320F2812具有较高的处理速度,可以满足双足机器人步态规划以及控制的算法的实现,另外还有着集成丰富的外设,可满足多个传感器的信号采集的需要。为了避免每次改写程序都重新对片内FLASH进行烧写,我们采用如下方案:由DSP通过JZ864微功率无线数据传输模块将由传感器得到的机器人姿态信息送到上位机,然后上位机根据这些信息和动作时序计算相应的控制指令,通过无线数传模块将指令发送回DSP,再由DSP的定时器生成相应的信号来控制舵机(如图2所示)。这样调试时只要在上位机里改写程序即可,动作调试好以后再将相应的程序烧写到DSP芯片的FLASH中。

    十个舵机的控制信号由F2812的通用I/0引脚A0到A9产生,这个过程由通用定时器l和通用定时器2的中断服务程序来完成。

    双足机器人的实时控制系统需要实时测量机器人的一些信息,为此我们在每个足底安装了四个霍尼韦尔触力传感器FSSl500NST,用于实时检测双足机器人脚面触地情况,计算双足机器人脚面压力中心位置。这种触力传感器具使用专门设计的精制压敏电阻硅传感元件。硅压阻元件在受到外力而发生弯曲变形的时候,电阻会相应增大。触力传感器通过不锈钢柱塞,将所受外力直接传递到硅感应元件上,元件阻值就随着所受外力同比例增加。这种电阻值的变化将最终通过电桥电路以mv级电平输出,灵敏度为0.12mY/g,直接接入DSP的模数转换电路会导致测量精度不高,需要设计如图3所示的信号调理电路。

    在经过调理电路放大以后,传感器的电平输出被放大到0—3V之间,可直接连到F2812的A/D转换电路。

 

    躯干的角速度包括滚转、俯仰和偏航三个方向的分量,一般需要关注的是滚转和俯仰方向的分量,即机器人是否会朝前后或左右方向摔倒。我们选择ADI公司的微机械陀螺仪ADXRSl50,其参数如表3所示。

 

    陀螺仪ADXRSl50具有Z一轴响应、工作频带宽、小而轻等特点,能够满足机器人双足行走过程中检测躯干实时角速度的要求。

    为了方便地控制机器人动作,我们选用了红外线遥控方式。选用集红外线接收和放大于一体的HS0038芯片作为红外线接收器,其中载波频率为38kHz;电路中将HS0038芯片的输出信号接到F2812事件管理器EVB的捕获引脚上,通过捕获中断服务子程序来对遥控器的信号进行接收和解码,然后查表来确定相应的按键,执行相应的动作。

3 行走试验

    通过在主控芯片中的步态规划,双足机器人在行走过程中的重心投影一直在支撑区域以内,试验在平整地面上进行,用7.4V的锂电池给双足机器人提供动力,机器人独立于上位机,用红外遥控器控制他的行为。在行走实验中,机器人收到指令后执行的一系列动作如下:

    (1)双腿弯曲,降低重心到一定高度;

    (2)身体左倾,重心投影移到左脚,抬右腿;

    (3)右腿前伸,沿设定轨迹着地;

    (4)身体右倾,将重心投影转移到右脚;

    (5)检测最近收到的指令,若为停止命令,则以右腿为支撑腿,收左腿,回到直立状态,否则执行下一个的动作;

    (6)左腿前伸,沿设定轨迹着地;

    (7)身体左倾,将重心投影转移到左脚上;

    (8)检测最近收到的指令,若为停止命令,则以左腿为支撑腿,收右腿,回到立正状态,否则执行第3个的动作。

    行走时各杆件运动的速度和加速度不能太大,运动速度会比较慢。经过多次试验和研究发现,如果摆动腿移动得太慢,会增加单腿支撑的时间,若摆动腿移动得过快,会增加对身体的作用力,使机器人稳定性变差,比较容易摔倒;在双腿支撑期,质心投影由一只脚上转移到另一只脚上,为了不让两脚相对地面滑动,必须较好地保持两脚的相对位置和相对姿态不变,因此在这一过程中各个关节也不能转得太快,而且摆动脚着地时会受到地面的冲击力,使机器人的身体有些晃动,双腿支撑期稍微长一些能起到缓冲作用。经过多次调整和试验,发现在取双腿支撑期2.5s、单腿支撑期1.5s时,可以得到比较稳定的前向行走。

 

4 结束语

    本文根据研究双足机器人行走的需要,选择大扭矩舵机作为各关节的驱动电机,设计实现了十自由度的小型双足机器人:以TI公司TMS320F2812 DSP作为主控芯片,为方便程序的调试,采用了JZ864微功率无线数据传输模块来传递上位机与机器人之间的信息。选择触力传感器FSSl500NST、微机械陀螺仪ADXRSl50来分别测量脚底板和地面接触信息以及躯干的角速度,采用了红外遥控的方式来控制机器人的行为,最后设计出机器人的整体控制系统并实现了稳定行走。

关键字:双足不行机器人  TMS320F2812  陀螺仪 引用地址:基于TMS32OF2812 DSP的双足机器人样机设计

上一篇:基于DSP+FPGA的实时视频采集系统设计
下一篇:Actel扩展Core8051处理器以扩大支持范围

推荐阅读最新更新时间:2024-05-02 20:57

基于DSP的车轮踏面擦伤检测系统的设计
0 引 言 随着电气化铁路在我国的普及,列车已经进入高速度化时代,车轮踏面的擦伤将严重影响车辆与轨道设施的安全和使用寿命。实现自动化检测车轮踏面状况迫在眉睫。随着电子技术的发展,数字信号处理(Digital Signal Processor,DSP)技术取得了巨大的进步,在当今信号处理领域中已占据了主导地位。擦伤振动检测系统采用振动加速度法进行擦伤检测,利用压电式振动加速度传感器将加速度信号转换成电荷量,再通过电荷放大器将电荷量转换成电压信号值传递给DSP进行处理,使用小波分析对采集数据进行处理,最终显示轮位踏面擦伤状况。 1 系统布局与工作原理 振动加速度擦伤检测系统通过检测车轮和铁轨动态接触时发生碰撞产生的振动加
[嵌入式]
基于STM32两轮自平衡小车
一、硬件介绍 主控芯片用的是100脚的STM32F103VET6,陀螺仪用的是MPU6050,电机驱动用的是TB6612,蓝牙是汇承的HC05邮票孔封装的,WIFI用的是济南有人科技的USR-WIFI232-S,小车底盘用的是平衡小车之家的某一款带编码器的(不是我买的,同学的),电池用的是一节7.2的镍镉电池,液晶用的是中景园电子1.3寸IIC接口的OLED,开关用的是三脚纽子开关,电池接口用的是T插,电阻电容这些用的基本上是0603封装,编码器5V降压用的是ASM1117-5.0,3.3V降压用的是SP6203,拨码开关用的是4P贴片式2.54mm角距的,按键是两脚贴片,microusb接口用的是5针 7.2四脚插板牛角
[单片机]
基于STM32两轮自平衡小车
多款陀螺仪表头设计、平台测试、系统研究方案及应用实例
陀螺仪就是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。根据需要,陀螺仪器能提供准确的方位、水平、位置、速度和加速度等信号,以便驾驶员或用自动导航仪来控制飞机、舰船或航天飞机等航行体按一定的航线飞行,而在导弹、卫星运载器或空间探测火箭等航行体的制导中,则直接利用这些信号完成航行体的姿态控制和轨道控制。 本文为你介绍了几种陀螺仪表头的设计方案及平台测试的方案,并介绍了几个陀螺仪的应用案例。 基于FPGA的光纤陀螺仪模拟表头及其测试系统 光纤陀螺是激光陀螺的一种,是惯性技术和光电子技术紧密结合的产物。它利用Sagnac干涉效应,用光纤构成
[测试测量]
基于TMS320F2812的快速以太网通信系统平台
引言 随着Internet应用的日益普及,信息共享程度的不断提高。嵌入式设备的数字化和网络化已经成为必然趋势,目前市场上的主流嵌入式操作系统都包含了TCP/IP网络协议栈。这些商品化的TCP/IP协议栈运行可靠、性能也非常好,但是价格较高,降低了市场竞争力。因此,开发自主知识产权的TCP/IP协议栈的要求变的日益迫切而有意义。 本文的研究目标是建立一个DSP系统的网络通信平台,实现DSP系统与网络中其他通信设备的高速数据传输。虽然选择了TI公司的TMS320F2812 DSP,但是本文提出的方案,具有很大程度的通用性,对其他系列的DSP或CPU系统也有一定的参考价值。 TCP/IP协议栈的体系结构 以太网最典型的应用形
[嵌入式]
基于<font color='red'>TMS320F2812</font>的快速以太网通信系统平台
基于TMS320F2812 的逆变电源控制器的设计与研究
近年来,现代逆变电源越来越趋向于高频化,高性能,模块化,数字化和智能化。 文中研制的逆变电源控制系统以TMS320F2812 作为控制核心,它是一种支持实时仿真的32 位微控制器,内部具有UART、SCI 总线、SPI 总线、PWM、定时器、ADC、CAN 总线控制器等众多外围部件,功能强大。主要实现PWM 产生、AD 转换、DA 转换、SCI、开关量检测、继电器驱动以及其他信号控制。 1 基于TMS320F2812 逆变电源的总体设计 1.1 DSP 控制器TMS320F2812 性能 TMS320F2812 芯片是TMS320C28x 系列中的一种,它采用先进的改进型哈佛结构,其程序存储器和数据存储器具有各自的总线
[电源管理]
基于<font color='red'>TMS320F2812</font> 的逆变电源控制器的设计与研究
ADXRS450:高性能,数字输出陀螺仪
ADXRS450是一款角速率传感器(陀螺仪),主要用于工业、医疗、仪器仪表、稳定和其它高性能应用。
[传感器]
利用加速度计和陀螺仪测量车辆运动
当测试车辆时,人们常常需要测量车辆的动态运动以及车辆相对于道路的倾角。我们可以通过加速度计来获得车辆转弯、加速或者制动时产生的冲击力,但是,除非车辆在进行上述运动时保持水平,否侧测试结果是不准确的。比如,你想用加速度计测量车辆的制动力,但车辆是向前倾斜的,测量结果中就会有重力分量。 大多数倾斜传感器把重力方向当作参考方向。重力是一种加速度,并且不断变化(应该是随高度变化吧)。制动、加速和转弯时,车辆会产生加速度。然而当进行倾斜测量时,我们只需要得到重力加速度;当进行车辆动力测量时,却又只想得到运动加速度。 有运动加速度时,倾斜传感器将得到一个不准确的倾角。也就是说,在车辆倾斜时只通过加速度计将无法得到准确的倾角。 通过测量绕
[模拟电子]
利用加速度计和<font color='red'>陀螺仪</font>测量车辆运动
基于STM32的跌倒防护装置研究
随着老年人口的剧增,老龄化问题成为当前社会的最突出问题。目前已知世界范围内60岁以上的老年人口已超过6亿。跌倒对于老年人群而畜是一个很严重的问题,除了肢体上的伤害,跌倒之后在心理及社交生活上也可能造成严重的后遗症。据统计,约三分之一65岁以上老人平均每年跌倒一次。面对这种情况,开发跌倒智能探测和报警系统,具有极其重要的现实意义和社会意义。 目前的跌倒检测可分为三类:基于视频图像的跌倒检测,其不足之处是受空间上的限制、视频图像的质量受环境影响较大和不能保证用户的隐私安全;基于声学系统的跌倒检测,其不足之处是安装复杂且资金投入比较大;基于穿戴式装置的跌倒检测,不受空间限制、环境干扰相对较小。 本系统开发的是基于穿戴式装置的
[单片机]
基于STM32的跌倒防护装置研究
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved