基于DSP的双足机器人运动控制系统设计

发布者:幸福之星最新更新时间:2010-07-26 来源: 现代电子技术 关键字:双足机器人  运动控制  无刷直流电机  DSP 手机看文章 扫描二维码
随时随地手机看文章

  近年来,仿人机器人一直是自动控制领域研究的热点。在模仿人类进行迈步行走时,由于仿人机器人的重心经常要处于中心线以外的区域,使得它的身体很难保持站姿平衡,能够稳定地实现双足行走是仿人机器人研究的重点也是难点。人类需要大脑和肢体的相互配合来协调动作,机器人需要的则是运动控制器和驱动装置的强大支持,尤其是运动控制器,需要有高效率的芯片为基础,才能最迅速地采集数据、完成计算和发送指令。在本次设计中机器人关节使用的是大功率三相无刷直流电机,控制器采用TMS320F2812芯片,它是TI公司推出的一款针对控制领域做优化配置的数字信号处理器,器件上集成了多种先进的外设,为电机高速度和高精度控制提供了良好的平台。

  1 系统概述

  双足机器人每条腿设有5个自由度,这样既可以实现基本的步行功能,又尽可能的简化了控制变量,系统整体结构如图1所示,L1~L5分别对应左腿髋侧向、髋前向、膝前向、踝前向、踝侧向关节电机,R1~R5对应右腿。考虑到成本因素和驱动性能,选用Maxon的EC-max系列三相无刷直流电机来驱动关节活动,其中1号和5号电机选用EC-max35型,其他均为EC-max30型。受安装空间所限,每条腿的运动控制器都为独立的个体,各运动控制器通过主控计算机进行协调控制并可基于运动指令单独完成动作,类似于人类反射弧的原理,减轻主控计算机的工作量,加快反应速度,主控计算机和运动控制器之间通过CAN总线来传递数据。

系统整体结构

  机器人双足步行时,主控计算机根据运动周期向底层运动控制器发送运行和停止等指令,完成对行走状态的监控和数据运算。单个运动控制器由DSP处理和电机控制两部分组成:DSP处理电路负责与主控计算机和传感器之间交换各类信息、分析接收到的数据并运算输出相应关节电机的控制信号;电机控制电路根据控制信号驱动相应的电机动作,达到要求的速度和角度,并对光电编码器信号进行处理,将执行结果反馈给DSP形成闭环控制,保证执行的精度。

  数据处理器选用的是TMS320F2812,它拥有基于C/C++高效32位DSP内核,提高了运算的精度;时钟频率高达150 MHz,增强了系统的处理能力;集成了128 KB的FLASH存储器、4 KB的引导ROM、数学运算表以及2 KB的OTP ROM,改善了芯片应用的灵活性;两个事件管理器模块为电机及功率变换控制提供了良好的控制功能;16通道高性能12位ADC单元提供了两个采样保持电路,可以实现双通道信号同步采样,适合整个运动控制器的开发需求,其代码和指令与F24x系列完全兼容,更是保证了项目开发和产品设计的可延续性。

  2 电机调速原理

  系统用PWM波形给出无刷直流电机的转速信息,即利用电路一周期内的占空比变化,达到平均电压值的改变,以对应电机不同的速度值。

  在TMS320F2812中可以通过配置定时周期寄存器的周期值和比较单元的比较值来产生PWM,周期值用于产生PWM波的频率,比较值用于产生PWM波的脉宽,改变比较值可以改变PWM波的占空比,改变周期值可以改变PWM波的频率。以事件管理器A为例,单路PWM信号的产生过程如下:

  定时器1作为产生PWM信号的时基,通过控制寄存器T1CON和周期寄存器TlPR设置时钟周期,通过寄存器COMCONA设置比较单元的各个参数,产生出三角波信号,在寄存器CMPRl和ACTRA中分别设置比较值和比较输出方式,设定的比较值实时与三角波信号比较,得到相应占空比的PWM信号。将定时器计数器T1CNT设置为连续增计数方式时,产生非对称PWM波形,设定为连续增减计数方式时,可以得到对称的PWM波形。

  图2所示是对称PWM波形产生的原理:若PWM输出为高电平有效,则当三角波的当前值小于比较值时输出为低电平,当三角波的当前值大于比较值时输出为高电平;低电平有效时,则反之。

对称PWM波形产生的原理

  如果在寄存器DBTCONx中设置了死区时间值,则相应事件管理器所有PWM输出通道使用同一个死区值。由于加入了死区,PWM波高电平脉冲的宽度减少了一个死区时间,但是周期没有变化,所以高有效和低有效的PWM波形的占空比可分别用式(1)和(2)来计算。

公式

  通过调节占空比,可以调节输出电压,用这种无级连续调节的输出电压可以给出速度信息,因此可以通过调整PWM信号有效电平的宽度达到控制转速的目的。

  3 硬件设计

  整个硬件电路包括DSP芯片TMS320F2812、电源、JTAG仿真接口、通讯、RAM、PWM、A/D、I/O扩展、备用端口、电机驱动和光电信号处理等模块,其控制系统结构如图3所示。

控制系统结构

  双足机器人总电源采用24 V直流电源,为了满足DSP及外围电路的需要,需将电源转换成5 V,3.3 V和1.8 V。首先使用DC-DC变换器将24 V转换成5 V,再选用TPS767D318电源转换芯片将5 V转换成1.8 V和3.3 V。该芯片专门针对DSP设备提供稳压电源,为双电源输出,每路电源的最大输出电流为1 A,此外该芯片的电压漂移非常低,在最大输出电流为1 A的情况下为350 mV,每路输出还有过热保护、复位和监控输出电压等功能,能满足系统对电源性能的要求。

  系统特别留有JTAG接口电路,使控制器可以通过TDS510仿真器连接到计算机,其仿真信号采用JTAG标准IEEEll49.1,使用双列14脚的插座,并将DSP上的EMU0和EMU1上拉连接至Vcc。

  TMS320F2812自身集成CAN总线的控制模块,所以在外围电路中加入CAN总线收发器SN65HVD251D即可实现DSP与CAN总线的通信功能。为了确保在CAN总线传输信号的完整性,设计时在CAN总线的两根传输线之间加上150 Ω的电阻进行阻抗匹配,可以提高CAN总线传输信号的精度。

  利用XINTF的区域O和区域1扩展一块存储容量为(64K×16)b的RAM存储器IS61LV6416-10T。其数据存取时间为10 ns,能满足高速运行的需要,工作电压为3.3 V,与DSP工作电压一致,无需电平转换电路。

  此外,DSP控制系统中的I/0端口电压绝大部分为3.3 V,而外部信号一般为5 V,因此需要将外部5 V信号转换为符合DSP芯片要求的3.3 V信号,系统使用总线驱动器74LVX4245进行电平转换。

  电机驱动电路采用全桥驱动三相无刷直流电机的控制方式,由于要独立控制5个电机,系统需按照前面的原理由DSP事件管理器生成PWM,并用其波形占空比给出转速信息,该信息结合转向、制动等信号通过控制电路转换后进行电机的调速,这里使用三相无刷直流电机控制器MC33035。驱动电机时,MC33035的输出信号施加到三相桥功率电路MPM3003上,决定功率开关器件开关频度及换流器换相时机,使其产生出供电机正常运行所需的三相方波,根据速度电压MC33035可改变底部半桥输出脉冲宽度,相当于改变供给绕组的平均电压,从而控制转速。

  4 软件设计

  运动控制系统软件设计的关键是接收到主控计算机传来的运动控制指令后,电机是否能够达到要求的速度和角度,考虑到整个系统运行过程中不可避免的误差,特别引入补偿算法,实现速度和位置双闭环PID控制,其具体的控制流程如图4所示。

控制流程

  主控计算机根据步态规划的数据,发出运动指令,生成下一个运动周期各个电机的转动方向和角度等控制参数,运动控制器接收到新的数据之后,PWM控制根据数据计算出占空比信息并生成相应的PWM波,进而控制电机转动,随后将电机光电编码器传送回的信号转换成关节位置和速度等信息,补偿控制针对速度和位置误差采用PID算法进行调节,计算需要的执行量,调整PWM波形,在每一个运动周期内使电机达到指定的速度,并使运动中的关节电机能够克服机器人重力和外力的影响,保持在设定的角度。图5是CCS仿真调试时,程序运行后在指定的摆动角度下监控到的单关节电机速度跟踪曲线,其响应时间和稳定性基本满足双足步行的要求。

CCS仿真调试

  5 结语

  介绍了一种基于DSP的无刷直流电机运动控制系统,在控制方案的具体实现过程中,根据机器人腿部系统的自身特点,将控制器围绕DSP处理和电机控制电路来分别设计,这样既方便设计和调试,又增强了系统的灵活性和扩展性。电机驱动采用速度和位置双闭环控制,保证运转精度。经测试,系统基本满足运动控制的要求,为双足步行规划提供了试验平台。

关键字:双足机器人  运动控制  无刷直流电机  DSP 引用地址:基于DSP的双足机器人运动控制系统设计

上一篇:基于TMS320F206 DSP的图像采集卡设计
下一篇:基于DSP与数字温度传感器的温度控制系统

推荐阅读最新更新时间:2024-05-02 21:06

基于DSP无刷直流电机控制系统的研究与设计
引言 近几年来,随着电力电子器件和现代控制理论的迅速发展,无刷直流电动机由于没有接触式换向装置,不存在换向引起的火花,其具有效率高,转速不受机械换向所限制,可维护性强,安全性高等诸多优点,而被人们广泛应用于光驱、智能机器人、电动交通工具等领域。DSP(数字信号处理器)则以其高速的数据处理能力、丰富的内部资源、集成度高和功耗低等特点,已广泛应用在控制领域中。本文提出了一种基于DSP的无刷直流电机控制系统的设计方案。该设计结合模糊控制方法来实现无刷直流电动机的智能化控制。 1 无刷直流电机的数学模型 根据物理学公式,单根导体在磁场中切割磁力线运动时,所产生的电动势e为: 式中,B为磁场感应强度,l为磁场中导体的有效
[工业控制]
基于<font color='red'>DSP</font>的<font color='red'>无刷直流电机</font>控制系统的研究与设计
DSP在三相无刷直流电机中的应用
1 概述   无刷直流电机是随着电力电子器件及新型材料发展而迅速成熟起来的一种新型机电一体化电机,它既具有交流电机的结构简单,运行可靠,维护方便等优点,又具备直流电机那样良好的调速特性而无由于机械式换向器带来的问题,还具有运行转速稳定、效率高、相对成本低等优点,因此被广泛应用于各种调速驱动场合 。以往的无刷直流电机多由单片机附加许多种接口设备构成.不仅复杂,而且速度也受到限制,难于实现从位置环到速度、电流环的全数字控制,也不方便扩展。而应用数字信号处理器(DSP)实现的电机伺服系统却可以只用一片DSP就可以替代单片机和各种接口, 扩展方便,可以实现位置、速度和电流环的全数字化控制 。   本文采用TI公司推出的240xDSP作
[嵌入式]
全新DSP 内核CEVA-TL3211(CEVA)
CEVA公司宣布,其CEVA-TeakLite-III DSP架构增添新成员CEVA-TL3211。这款先进的DSP内核瞄准市场对低成本智能手机以及数字电视 (DTV)、机顶盒 (STB) 与蓝光播放器等设备中高清 (HD) 音频功能不断增长的需求。CEVA-TL3211可提供业界最高的性能和功效,最大的用户灵活性,以及最小的存储器占用空间,能够满足2G/3G调制解调器与先进音频处理的性能需求,包括获Dolby和DTS全面认证的HD音频编解码器集合。这款新推内核已获一家顶级半导体供应商的采用。 新推出的CEVA-TL3211 DSP内核符合CEVA-TeakLite-III架构标准并且代码向前兼容,而符合TeakLite-II
[嵌入式]
基于DSP的数字存储示波卡的设计方案
1.引言 数字存储示波器有别于一般的模拟示波器,它是将采集到的模拟电压信号转换为数字信号,由内部的微处理器进行分析、处理、存储、显示或打印等操作。这类示波器通常具有程控和遥控能力,通过GPIO接口还可将数据传输到计算机等外部设备进行分析处理。随着大规模集成电路的不断发展,功能强大的DSP数字信号处理器的实时性越来越强。DSP凭借其强大的数字信号处理能力,为数字示波器的数据采集系统的实现提供了一个可靠而又实用的平台,并且提高了数字存储示波器的采样速率、存储深度、波形捕获能力等指标。 本文描述的数字存储示波卡是一种基于DSP的双通道数字存储示波器。该示波器采用的是TI公司的TMS320F2812芯片,它具有高速的数字信号处理能力和滤波
[电源管理]
基于<font color='red'>DSP</font>的数字存储示波卡的设计方案
采用CAN总线实现DSP芯片程序的受控加载
  磁悬浮列车上有很多基于 DSP 芯片的模块和系统。目前, DSP芯片程序的加载与运行都主要依赖于仿真器,而DSP仿真器价格高、体积大,这使得磁悬浮列车系统的调试很不灵活方便;且这些基于DSP芯片的系统一旦脱离仿真器就只能运行事前载入的单一的程序,也使系统的灵活性受到了很大的限制。本文研究了DSP芯片程序加载的基本原理,并根据这些原理,基于CAN总线,实现了DSP芯片程序的 受控加载 ,使得DSP芯片程序的加载与启动可直接受控于上位主控机。由于主控机的灵活性很大,磁悬浮列车系统在调试时就可根据需要对其上各个控制模块的主控DSP芯片加载不同的程序,控制它的启动运行,非常方便灵活。    1 CAN总线的特点及工作原理  
[嵌入式]
采用CAN总线实现<font color='red'>DSP</font>芯片程序的受控加载
FPGA将成为传统DSP的有力挑战
宽带革命     市场环境的变化将会改变未来几年内DSP实现的方式。最显著地,宽带革命将带来最大的挑战。 宽带革命是由传统上分别属于不同领域的许多技术的融合所引发。其中包括计算、电信/无线、视频、图像和网络等。图1突出了由这一融合而新产生的一些新应用。     此类新兴应用需要处理的模拟和数字数据量呈指数型增长。这又进一步加大了对更快的DSP的需求。虽然摩尔定律仍适用于目前最快的DSP,但在所需要的性能水平与实际DSP器件所提供性能水平间的差距仍在不断增大(参看图2)。因此很明显,DSP要满足宽带革命所提出的挑战必须寻求新的数据处理方法。     此外,今天快速变化的市场上,产品上市时
[应用]
采用DSP的电源控制系统的软硬件开发
1 引言 随着现代电力电子技术的不断进步和信息技术的发展,逆变电源越来越广泛的应用于通讯、航海、航空、医疗、军事等诸多领域,同时用户对逆变电源的性能也有了越来越高的要求。作为逆变电源的核心,逆变器的控制系统对提高电源性能起着极其关键的作用。逆变电源的控制器经历了从模拟控制器到数字控制器的发展, 数字控制器与模拟控制器相比较,具有控制精度高、参数调整方便、更改控制策略灵活等优点。尤其随着控制专用DSP的出现,使得逆变电源的控制技术朝着全数字化、智能化及网络化的方向发展。本文选用TI公司新推出的数字信号处理器TMS320F2812作为电源的主控制器,设计了一种结构简单、扩展方便的控制系统,实现了逆变电源的精准控制。 2 系统
[电源管理]
采用<font color='red'>DSP</font>的电源控制系统的软硬件开发
采用ARM Cortex-M3单片机和DSP的逆变电源设计
  引 言   在电气智能化发展无处不在的今天, 无数用电场合离不开逆变电源系统( Inverted Pow er Supply System,IPS) 为现场设备提供稳定的高质量电源, 特别在如通信机房、服务器工作站、交通枢纽调度中心、医院、电力、工矿企业等对电源保障有苛刻要求的场合。许多IPS产品因遵循传统设计而不符合或落后于现代电源理念,突出表现为控制模块的单一复杂化, 控制器芯片落后且控制任务繁重, 模拟闭环控制而得不到理想的监控和反馈调节效果,并由此带来单个控制设备软硬件设计上的隐患, 这对IPS 电源输出造成不利影响, 甚至对用电设备因为供电故障而导致灾难性后果。数字化控制技术日趋成熟,而且在某些领先理念的电源设备控
[嵌入式]
采用ARM Cortex-M3单片机和<font color='red'>DSP</font>的逆变电源设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved