用于可燃气体信号采集的数字显示探头设计方案

发布者:暮烟微雨最新更新时间:2011-03-31 来源: elecfans关键字:可燃气体  信号采集  数字显示  探头 手机看文章 扫描二维码
随时随地手机看文章
     可燃气体测量仪器是一种广泛用于石油化工、天然气、矿井、冶金、油库等众多易燃易爆场所的检测设备。该设备对可燃气体测量主要是通过单点或多点测量,但随着现代科技的进步已逐渐发展成通过计算机实现仪表数字化网络测量的监控系统。用这样的一个监控系统监控、采集被测现场的可燃或有毒气体,可以及时地把被测气体的浓度通过液晶显示出来。当气体浓度达到报警值时,就会发出声光报警,并记录下报警时间,以便事后的检查。而采集到的信号将被传送给计算机控制系统,通过关联的联动模块触动阀门以打开排气、排风设备,从而实现现场可燃气体的安全控制。因此设计一款能稳定并实时采集现场可燃气体信号的数字显示探头就尤为重要。

  1 系统工作原理

  可燃气体报警器由传感器检测电桥、直流放大器、A/D转换单元、零点、量程调整单元、单片机以及报警显示电路和输出电路等部分组成。系统框图如图1所示。首先,传感器送来的与可燃性气体浓度相对应的微小电压信号经过放大后,由A/D转换电路将其转换成数字信号后送入单片机。单片机再对该数字信号进行滤波处理,并对处理后的数据加以分析,以确认是否大于或等于某个报警值。若大于报警值则启动报警电路发出声光报警,反之则为正常状态。然后该数字信号被送到显示单元以显示相应的浓度值。

  


  2 硬件电路设计

  2.1 可燃气体传感器

  经过试验对比,该设计采用半导体金属氧化物可燃气体传感器TGS842。这种具有高稳定性的传感器需要在一定的高温下工作,以实现其氧化还原反应,所以必须要有电压来为其加热,而加热电压是由+5 V的电源提供。该传感器的测量方式为:由其构成惠斯登检测桥路,当含有可燃性的混合气体扩散到检测元件上时,在气敏元件表面将会发生氧化还原反应,使电阻阻值发生变化,打破电桥平衡,产生大小与可燃气体浓度成正比的微小电压差信号,从而达到检测可燃气体浓度的目的。过程如图2所示。

  

  2.2 信号调理电路

  传感器输出的信号是微弱信号,需经过集成运算放大器OP07进行线性放大处理,以满足A/D转换电路对电平信号的要求。但在信号输入前,需加入一个具有 100个电阻值,并能对漂移信号进行精确调节的高精度数字电位器X9C103对输入漂移信号进行调零,使其不进入运算放大器OP07。具体流程为:电桥输出的信号一端经X9C103(P3.4控制)调零后;进入OP07的反相输入端(2脚),而输出电压V。则通过电阻R9接到反相输入端(2脚)和调零端(1脚)以保证引入的是负反馈;另一端由同相输入端(3脚)引入放大器,经放大后由另一个X9C103(P3.5控制)实现量程的外部调节。

  信号经过2个数字电位器到达A/D转换单元。A/D转换单元由TLC549芯片实现,它以8位开关电容逐次逼近的方法实现转A/D转换。模拟信号有ANVIN引入,它通过,CLOCK和DATA OUT与AT89C51通信。当变为低电平后,TLC549芯片被选中,同时前次转换结果的最高有效位MSB(A7)自DATA OUT端输出。接着CLOCK端输出8个外部时钟信号,前7个CLOCK信号的作用是配合TLC549输出前次转换结果A6~A0,并为本次转换做准备。在第4个CLOCK信号由高变低后,片内采样保持电路对输入模拟量采样开始。第8个CLOCK信号的下降沿使片内采样保持电路进入保持状态,并启动A/D 开始转换。

  为了使电路能够可靠稳定的工作,采用X5045实现电路监视功能。X5045有一个可设定200 ms,600 ms,1.4 s或禁止的看门狗定时器。在本电路中X5045被设置为1.4 s的定时器。硬件电路如图2所示,在单片机程序中,每隔一定的时间间隔放置一条“喂狗”指令(即在P1.6输出一个下降沿),该时间间隔应小于1.4 s,以保证程序正常运行时X5045不会溢出;当程序出现异常,该时间间隔将超过1.4 s导致X5045溢出,并通过RST引脚送出一个复位信号使单片机复位,重新开始运行程序。

  2.3 输出单元

  传感器的现场电压信号由电压/电流变换器转换成4~20 mA的标准电流信号后传送给上位机控制系统。为实现电压信号变换成4~20 mA标准电流信号,采用XTRl05精密电流变送器。它内含1个高精度的仪表放大器、1个电压/电流变换器和2个相同的O.8 mA精密恒流源基准。传感器的电压信号由13脚输入;3,4脚之间接滑动电阻以调节输出满幅值;1,2,14脚接电源,I/O脚接24 V电源正端(且是环流注入端);7脚通过负载电阻RL接电源负端(也是环流信号输出端);8,9脚外接BD235三极管,该三极管是4~20 mA电流回路的主要电流传导器件,能将外部电源电流与XTRl05的内部消耗严格地分开。

  2.4 零点、量程调整及报警单元

  本探头的量程为O~100%LEL,可针对不同环境对零点及量程做适当调整。按键电路采用霍尔元件A44,它可置于表头内部,提高了探头的安全性,从而改进了按键易受腐蚀,不利于装置密封的缺点。在外磁场的作用下,当磁感应强度超过导通阈值时,霍尔输出管导通,输出低电平。相反,则霍尔输出管截止,输出高电平。对于可燃气体检测仪,声光报警部分必不可少。当可燃气体浓度小于安全值时绿灯亮,但可燃气体浓度大于安全值时红灯亮,同时伴随蜂鸣器响。即当检测到可燃气体在空气中所占的比例超标时,就发出声光警报,防止由可燃气体含量过高而发生意外事故。如图3所示。

  

零点

  2.5 电源模块设计

  控制系统采用统一的24 V直流电源供电,但是AT89C51和TGS842传感器需要+5 V电源,而OP07需要-5 V电源,这就需要电压转换单元。可用MC34063芯片来实现+24 V到+5 V的电压转换。MC34063芯片是单片式DC/DC变换器。图4为采用MC34063芯片构成的开关降压电路。当芯片内部开关管导通时,电流经 MC34063的1脚、2脚给电感L1,L2,电容G3和负载供电,同时电感L1,L2存储能量;当内部开关管断开时,由电感L1,L2继续给电容C3和负载供电,输出+5 V电源电压。如图5所示。

  

开关降压电路

  ICL7660内含四个模拟开关S1~S4,由内部振荡器控制、按一定顺序通断。两个普通的电解电容C2和C3分别接到脚2和脚4以及脚5。当S1和S3 闭合,S2和S4断开时,C2被充电至+5 V。过一段时间,当S1和S3断开,S2和S4闭合时,C2上的电荷便向C3上转移。数次循环后,C3上的电压便等于-5 V,从而实现了正电压到负电压的变换。

  3 软件设计

  系统的软件功能主要包括:被检测气体浓度信号A/D转换、防脉冲干扰平均值滤波、状态指示灯及按键功能设置、用液晶显示模块显示气体浓度值和报警电路设计等。主程序流程如图6所示。

  

主程序流程

  3.1 报警电路的设计

  报警程序的设计思想是首先将报警值输入Xmax单元,然后获取本次采样值Xi与Xmax进行比较。若小于报警值,则本次采样正常,可将正常值送入 RESULT单元,并置标志位O(表示正常)。若大于报警值,则转入报警处理。进行报警处理时,首先判断上一次采样是否正常,如果正常,即可重新采样,置允许检测不正常次数N,然后在转入报警处理程序;如果不正常,则检测一下是否连续N次不正常。是,则报警;不是,则再把剩下的允许连续不正常的次数Z存入计数单元,然后再进行报警处理,置本次采样不正常标志返回主程序。报警电路程序流程如图7所示。

  3.2 滤波电路的设计

  工作环境的变化可能会使气体传感器在对气体浓度采样时遇到尖脉冲干扰。这种干扰一般持续时间短,峰值大。在对其进行数字滤波处理时,仅仅采用算术平均或移动平均滤波只能对脉冲干扰进行1/n处理,其剩余值仍然较大。最好的策略是去掉将受干扰信号的数据,即防脉冲干扰平均值滤波法。算法是:对连续的n个数据进行排序,去掉最大和最小的2个数据,将剩余数据求平均值。为了加快数据处理速度,n的取值为8。

  但是该算法还存在一个不足之处,就是每采集一个数据就要进行一次排序,这样会大量占用系统时间。解决的办法就是在系统中用两个变量来存储当前n个数据的最大值和最小值在这个数组中的偏移量,只有被新输入数据覆盖的数据正好是当前的最大或最小值时,才会在下个数组中查找最大或最小值;这样在其他情况下,只要将输入数据与最大值和最小值比较就可以修改最大值和最小值了,而且不用进行数据排序。滤波电路软件流程图如图8所示。

  

 

  4 结语

  本文所设计的可燃气体数字显示探头具有结构稳定、测量精度高、利于密封和可维护性好等特点。该仪器用LCD显示可燃性气体浓度,在其浓度达到设定浓度时发出声光报警。具有的故障自诊断功能能快速重复检测和延时报警。同时报警器还能与上位机控制系统进行通信,既可以实时传送气体浓度检测数据给控制系统以记录保存,也可以利用上位机控制系统实现远程实时检测和联动装置的控制等功能。

关键字:可燃气体  信号采集  数字显示  探头 引用地址:用于可燃气体信号采集的数字显示探头设计方案

上一篇:基于DDS的椭圆函数低通滤波器的设计
下一篇:基于DSP的交流电机变频调速系统设计

推荐阅读最新更新时间:2024-05-02 21:19

神奇的示波器探头:成也是你,败也是你
又是一个和探头,接地相关的真实调试案例!    有些电路本来没有问题,连接上探头就有问题了;有些电路本来有问题,接上探头又没有问题了。两种情况下的根源可能大不一样,但一定是有一个没有被挖出来的根源。    来自西门子公司的李工和R&S的李工一起,追根溯源,搞明白了原来问题出在晶振的"来料不良"上。这令笔者想起有位老采购说的:最容易出问题的物料就三样:电源,晶振和接插件。在发现问题的过程中,我们可以看到示波器作为"工程师的眼睛"的价值。    2014年7月份,我们启动了电能质量高端设备开发项目。这个项目的技术需求是采样点多,数据率高,算法复杂,数据存储量大,网络接口多,高级应用多等。面临这样的情况,我们通过大量分析和评
[测试测量]
差分探头N系列的使用方法及注意事项
为满足高频宽高压信号的测试要求,品致突破新的测试领域,推出200MHz高精度高压差分探头,设有两种供电模式(适配器和电源供电),采用人性化设计,内设自动归零,BNC接口可兼容任何品牌示波器! N2040A 差分测试棒提供一个安全的仪器给所有的示波器使用,它可以转换由高输入的差动电压(≤4000V PEAK TO PEAK)进入一个低电压(≤7V),并且显示波形在示波器上,使用频率高达 200MHz,非常适合大电力测试、研发、维修使用。 差分测试棒输出标示是设计在操作示波器 1MΩ的输入阻抗的相对衰减量,当使用 50Ω 匹配器进衰减量刚好为 2 倍量。 N2040A 差分测试棒,也建议选购本公司生产的 PL-10 阻抗转
[测试测量]
使用可燃气体检测仪时需要注意的问题
一、注意经常性的校准和检测 有毒有害气体检测仪也同其它的分析检测仪器一样,都是用相对比较的方法进行测定的:先用一个零气体和一个标准浓度的气体对仪器进行标定,得到标准曲线储存于仪器之中,测定时,仪器将待测气体浓度产生的电信号同标准浓度的电信号进行比较,计算得到准确的气体浓度值。因此,随时对仪器进行校零,经常性对仪器进行校准都是保证仪器测量准确的必不可少的工作。需要说明的是:目前很多气体检测仪都是可以更换检测传感器的,但是,这并不意味着一个检测仪可以随时配用不同的检测仪探头。不论何时,在更换探头时除了需要一定的传感器活化时间外,还必须对仪器进行重新校准。另外,建议在各类仪器在使用之前,对仪器用标气进行响应检测,以保证仪器真正
[测试测量]
示波器测量应用时的一个问题
最近一位工程师来问,说对电路板上的波形进行测试时,一接上示波器就烧板子上的器件,问是怎么回事。初以为是电路板设计问题,看原理图也没发现明显错误,百思不得其解中。后借出差机会面看,方醒悟之。 前几日,一协作单位投诉我公司所提供板卡有问题,说测试起来如何如何,一查与此问题类似,遂深以为有必要在此说明一下,以免出现同案犯。 示波器的探头上有两根线,一根在硬表笔上,一根是软线甩出来,头上接个小夹子,以便夹住接地点。在我们通常的认识中,这两根线在测量的时候,就是测的两点之间的压差,照此理解,此探头其实可以随便接了。其实不然。很多示波器表笔上的那根软线是接地线,而且这根接地线与示波器的大地相接的。如果贸然将此二线接到了两个测试点上,
[测试测量]
示波器测量应用时的一个问题
TCP0030A电流探头的性能指标及应用范围
TCP0030A是简便易用的高性能交流/直流探头,旨在用于通过TekVPI™探头接口直接连接示波器。该交流/直流测量探头提供了超过120MHz的带宽,选配择5A和30A测量量程。这些探头还提供了卓越的低电流测量能力和最低1mA的电流精度,这对满足当前极具挑战性的电流测量需求至关重要。 主要特点: •简便易用,准确进行AC/DC电流测量 •与TekVPI™示波器进行智能通信,提供: —单位定标和读数。电流和幅度读数在屏幕上自动显示。 —无需手动设置。没有必要进行从电压到电流的手动计算 —按钮消磁和自动置零功能 —探头状态和诊断指示灯LED —分裂铁心结构,电路连接简便 —精度高,DC增益误差一般小于1% —噪声和直流漂移小 —第
[测试测量]
基于单片机的信号采集系统设计方案
信号采集设备广泛使用于机器健康诊断系统中用来记录、监视和诊断。机器情况数据经常由非便携式或者带导线的设备收集。对于一些重要的应用,比如危险或者遥远的地点,尤其是在航空上,提供可以方便地携带或者读取的设备是必要的。另外,机器健康诊断尤其是机床振动信号诊断经常处理低频信号,这值得关注。   本文研究一种微控制器为基础的信号采集系统,以满足信号采集的低成本和灵活模式。开发系统的主要硬件包括一台微型计算机、一个以PIC18F1320为基础的微控制器电路板以及串行通讯链接设备。EEPROM 24LC32A被用来进行存储器扩展。微型计算机运行控制程序。一旦用户在微型计算机界面上决定采样输入,信息便通过RS-232端口送往微控制器。微型计
[单片机]
基于单片机的<font color='red'>信号采集</font>系统设计方案
深入了解示波器探头,学会这些再也不怕效率低
深入理解示波器探头各种作用及工作原理 示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路,如下图: 图 1 示波器探头的作用 探头的选择和使用需要考虑如下两个方面: 其一:因为探头有负载效应,探头会直接影响被测信号和被测电路; 其二:探头是整个示波器测量系统的一部分,会直接影响仪器的信号保真度和测试结果 一、探头的负载效应 当探头探测到被测电路后,探头成为了被测电路的一部分。探头的负载效应包括下面 3 部分: 1. 阻性负载效应; 2. 容性负载效应; 3. 感性负载效应。 图 2 探头的负载效应 阻性负载相当于在被测电路上并联了一个电阻,对被测信号有分压的
[测试测量]
深入了解示波器<font color='red'>探头</font>,学会这些再也不怕效率低
Labsphere发布LED和光源测定产品 量身定制精准校准和快速测试
“Starter and Choice” 系列新设备为用户提供完整、灵活的光测试方案 上海8月1日电 /新华美通 / -- 为了满足中国科学和工业市场中日渐增长的广泛光测试需求,蓝菲光学 (Labsphere) 公司 -- 光测试解决方案设计及制造行业的一家世界领军企业,发布了新系列的 LED 和光源测定产品。蓝菲光学 (Labsphere) 的产品非常适用于中国所致力于发展的发光和显示技术研发领域。“Starter and Choice” 系列包括的新产品有光谱仪,光强度探头,光谱辐照度接收仪,标准校准灯源,LED 空间分析器以及新的 LightX 软件平台。新产品系列针对用户的研究、开发和生产需求来量身定制了精准的校准措施
[新品]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved