基于DSP和MATLAB的语音数据采集和处理系统

发布者:fuehrd努力的最新更新时间:2011-07-01 关键字:DSP  MATLAB  语音数据采集 手机看文章 扫描二维码
随时随地手机看文章
   

1 引言
---目前迅速发展的数字信号处理器已在数据采集、通信及多媒体等领域中得到广泛的应用。本系统采用TI公司16位定点高速芯片TMS320C5410和专用语音采集芯片TLC320AD50进行数据采集和相关滤波、压缩处理,并将最终的数据流经串口送入计算机。在计算机中使用MATLAB控制串口接收数据并完成解压、回放、编码、通信仿真等处理。

2 硬件接口电路


 ---

2.1 TMS320C5410外部扩展电路
---TMS320C5410是TI公司于1996年推出的定点数字信号处理器。它运行速度快,单周期定点指令执行时间10ns或8.3ns,远大于语音采集和处理的要求。另外它采用修正的哈佛结构,程序与数据分开存放,内部具有8条高度并行性的总线。其中,一组程序总线,三组16位数据总线和四组地址总线。允许数据存放在程序存储器中,并被算术指令直接使用,大大提高了运行速度和灵活性。CPU具有40位算术逻辑单元,两个独立的40位累加器,17×17位并行乘法器,一个40位桶形移位寄存器、8个辅助寄存器、2个辅助寄存器算术逻辑单元。最大可有8M字可寻址程序存储空间,可访问的数据存储空间有64K字,I/O存储器空间有64KB。其中片内64KB的RAM包括两块2KB的DARAM,七块8KB的SARAM以及片内16KB的ROM配置位程序存储器。片上集成一个16位定时器、软件可编程等待状态发生器、六通道直接存储器访问(DMA)控制器、三个多通道缓冲串口(McBSP)以及一个8位增强型主机接口(HPI8)。
---图1为DSP与存储器的接口电路,其中PS、DS、IS分别为程序、数据和I/O空间选择信号。MSTRB、IOSTRB分别为存储器和I/O选通信号。
---另外,由于FLASH存储器与EPROM相比有更高的性价比,而且体积小,功耗低,可电擦写,使用较方便。因此,本系统也扩展了一片FLASH存储器,图2为DSP与FLASH的接口电路。FLASH芯片为AMD公司的AM29LV400B,该芯片为单电源供电,支持整片擦除,每个分区有保护,避免意外擦除,并且使用寿命很长。

--2.2 TMS320C5410与TLC320AD50的接口电路
---AD转换是本系统的重要组成部分,要着重考虑转换精度和抗干扰问题。本系统所用AD和DA转换芯片为TI公司的TLC320AD50,它在一个封装中集成了两种功能,可同时进行AD和DA转换。图3为TMS320C5410和TLC320AD50的接口电路。
---AD50采用16位过采样sigma-delta技术,以8K的采样率对输入的语音信号进行采样、量化,按同步串行方式传给5410进行处理。AD50向CPU发出帧同步和移位时钟信号来控制数据的串行传输。在此需说明一下,本系统主要用来将语音信号通过AD转换采集进来,然后串行发送给PC,在PC中用MATLAB接收信号并进行处理。整个过程中DA转换并不在信号处理的主要流程中,DA转换只是用来验证采集数据时所用到的滤波、压缩算法的正确性与合理性。所以,在编写系统软件时并没有将DA转换写入。此外,把DA转换加进来也是为了丰富系统硬件资源利于今后进行功能扩展。
---2.3 TMS320C5410与PC机的串口通信
---本系统采用MAX232E构成5410与PC间的通信接口。MAXIM公司的MAX232E采用单5V电源供电,使用时只需外接4个电容就能完成TTL与RS232间的电平和逻辑关系的转换。经过DSP系统处理的语音信号通过串口以9600b/s的速率送入计算机,在计算机中通过MATLAB控制串口接收数据,并且利用MATLAB强大的数据处理能力对语音信号进行处理。

3 软件实现


 ---

    本系统的软件由上位机部分和下位机部分组成。其中,下位机部分主要是针对DSP编程完成语音信号的采样、量化、滤波、压缩编码、以及与PC的串行通信。上位机部分主要是采用MATLAB语言编程进行串口数据接收、解压缩、以文件的形式存储数据并且最终将该数据文件送入本人用MATLAB语言完成的一个通信信号处理系统进行进一步处理。


---3.1 下位机部分
---整个下位机部分的程序流程图如图4所示,其中滤波部分为一个FIR高通滤波算法。这是因为主要采集的对象为语音信号,而TLC320AD50内部只有一个低通滤波器,可以用于滤除高于3.4kHz的干扰信号,但是对于低于300Hz的干扰则无能为力,所以针对DSP编程设计一个FIR高通滤波器滤除低频干扰。FIR滤波器在数学上可表示为:

---式(1)中x(n)为最近的输入信号,x(n-k)为延时了k个取样周期的输入信号,y(n)为时刻t=nT的滤波器输出信号,N为滤波器的阶数。h(k)是第k个延时节的加权值,既滤波器系数,可由MATLAB的kaiserord函数和fir1函数共同算得。从计算结果可以看出,一个N(设N为偶数)阶的FIR滤波器具有系数对称性,从而其输出方程可进一步简写为:
---y(n)=h0[x(k)+x(k-N+1)]+h1[x
---(k-1)+x(k-N+2)]+Λ+
---nH/2-1[x(k-N/2+1)+x(k-
v---N/2)] (2)
---根据(2)式可以编写相应程序完成FIR高通滤波。
---语音压缩部分采用的是非失真的压缩算法。具体为:当有两个以上连续相等的数据时,可以用3字节表示,即前2字节相等表示被压缩的数据值,后1字节表示被重复次数。由于语音信号自身的特点,即冗余度大,这就为此种压缩提供了可能。同样,在解压时,程序读入数据流,当遇到两个相等数据时则重复此数,重复次数由后一个数据决定。


3.2 上位机部分
---本次设计中比较新颖的地方就是上位机部分采用MATLAB控制串口接收并处理数据。比起VC或者VB,用MATLAB作上位机程序有其独特的优势。MATLAB自带很庞大的函数库,控制串口有serial等函数,语音的回放有wavread函数,至于信号处理更是MATLAB的强项,它自带的信号处理工具箱函数大大的缩短了系统软件开发的周期。另外,MATLAB作人机交互界面也很方便,其自带的GUI工具包使整个过程快捷、流畅,比起VB也逊色不了多少。
---3.1.1 MATLAB的人机交互软件设计


 ---

    用MATLAB控制串口接收数据有以下几步:
---1. 先进行串口的初始化操作,然后打开串口,用到的函数为:serial和open。
---2. 设定MATLAB和DSP的握手方式,可通过串口目标的FlowControl属性设定。
---3. 接收和发送数据,用到fread和fwrite函数。
---界面如图5所示,调试时注意MATLAB本身的GUI环境下设计的软件界面不能使用全局变量,若是使用会出现函数使用错误。另外,接收和发送数据之前要清PC的数据缓冲区,以免接收到或发送的数据不是当前数据。最后,接收到的数据应以文件的形式存储下来,以便后续的系统处理。
---3.1.2 信号处理系统设计
---上位机的信号处理系统的设计思路是这样的,信号首先以文件的形式输入处理系统进行频谱分析,观察信号是否被噪声污染。若其频谱含有噪声谱则马上进入滤波器模块进行滤波,以滤除信号中的噪声。然后,再将滤波后的信号送入编解码模块进行编码或解码(在这里用户可以选择不同的编解码方式)。最后将信号送入通信仿真模块进行各种调制或解调处理及相应波形的显示。

结束语
---TMS320C5410作为高速数字信号处理器具有快速的运算能力,结合MATLAB强大的信号处理能力,完全可以达到较复杂的语音信号处理要求。而且系统的可扩展能力很强,可对软件进行修改或者添加新的快速的算法提高系统信号处理的实时性。

关键字:DSP  MATLAB  语音数据采集 引用地址:基于DSP和MATLAB的语音数据采集和处理系统

上一篇:基于FPGA的线阵CCD驱动设计
下一篇:基于DSP+LabVIEW的特高压验电器设计方案

推荐阅读最新更新时间:2024-05-02 21:28

低功耗处理器:下一个兵家必争之地
根据摩尔定律,每18个月(起初是24个月)芯片上的晶体管密度就会翻番,但是前几年功耗问题曾一度困扰Intel等公司的发展。为此,Intel对摩尔定律进行了大胆的修正,指出摩尔定律是晶体管密度、性能和功耗的折中发展规律。为此,多核开创了一个崭新的计算时代。 图1 原摩尔定律不再有助于功耗降低    通常认为,多核设计与优化的处理器相互协同作用,才能带来芯片能耗降低的地震(图2)。多年来一直倡导在SoC中进行多核设计,在可配置多核方面独树一帜的Tensilica,在多核低功耗方面取得了巨大的突破,产品已经应用于Cisco ASR 1000F系列产品上,Cisco的QuantumFlow处理器采用了40核方案,Eps
[嵌入式]
低功耗处理器:下一个兵家必争之地
基于FPGA和DSP的CCD图像采集系统硬件设计
  当CCD产生的视频信号为模拟信号对,对其直接传输、存储和处理比较困难,须要将模拟视频信号转换为数字视频信号,以便对其进行处理,并进行高效可靠的传输和存储。当前,数字图像采集和处理系统不仅要面临高速宽带、高精度的挑战,而且对采样时机、采样点数、采样速率的可控性也提出了较高的要求,本文提出了一种实时图像采集和处理系统的设计方法,该系统以TMS320DM642 为核心,结合视频解码芯片SAA7115H和OSD FPGA构成实时图像采集和处理系统电路。    1 系统总体设计   1.1 系统结构   本系统以TMS320DM642为核心,采用模块化设计思想,整个系统主要由视频解码芯片(A/D转换芯片)、可编程逻辑门阵列(OS
[嵌入式]
MATLAB/SIMULINK的永磁同步电机矢量控制系统仿真研究
1.引言 随着高性能永磁材料、大规模集成电路和电力电子技术的发展,永磁同步电机因为其功率密度高,体积小,功率因数和高效率而得到发展,且引起了国内外研究学者的关注。传统的控制方式由于引入了位置传感器而给当前的调速系统带来了一系列的问题:占据了比较大的有效空间,使系统编程复杂。因此无位置传感器控制系统的研究变得越发的重要。 2.PMSM的坐标系和数学模型     永磁同步电机在定子三相(ABC)静止坐标系下的电压方程:     式中,三相绕组的相电压瞬时值分别为A u 、B u 、C u ; A i 、B i 、C i 是相电流的瞬时值; s R 是永磁同步电机定子的每相绕组电阻; A ψ 、B ψ 、C ψ 是永磁体的磁链在各相
[电源管理]
<font color='red'>MATLAB</font>/SIMULINK的永磁同步电机矢量控制系统仿真研究
基于DSP的视频编解码系统设计
    随着数字多媒体的应用日渐广泛,视频解码 在嵌入式系统设计中变成一个基本要素。视频标准有多种,依赖于产品可实施其中的一个或者多个标准。当然这不是全部,视频仅仅是多媒体码流的一部分,另外还 有音频或者语音需要并行处理。因此,一个精确的处理存储或数据流的同步层是必需的。此外,视频解码本身对性能要求较高,需要不同于先前基于语音和信息应用 的系统架构;这就对便携系统提出了特殊挑战,而桌面应用同样面临这些问题。 通用视频标准和编解码器 联合视频组(Joint Video Team, JVT)由 ITU的视频编码专家组(Video Coding Experts Group, VCEG)和ISO/IEC运动图像专家组(Moving
[嵌入式]
DSP编程技巧之3:揭开编译器神秘面纱之程序优化
 在二三十年前人们刚开始使用 C语言 代替汇编进行开发的时候,因为当初的处理器/控制器性能很弱,而 编译器 的能力也有限,所以形成了一些 C语言 编程效率不高的印象。但是今天的硬件性能已经非常强大,而 编译器 的能力也是日新月异,如果我们不熟练掌握汇编编程中的一些关键技术,编写的汇编代码的效率已经很难超过 编译器 从 C语言 转换出来的汇编代码了。 如果我们使用C语言进行编程的话,编译器除了可以把我们的加减乘除这样的操作转换为ADD、MPY以及相关的寻址、寄存器操作外,还可以在编译产生汇编代码的过程中进行不同程度的优化。优化的过程要根据器件的特点与指令集等进行有针对性的配置,所以在不同的器件上同一段C代码优
[嵌入式]
<font color='red'>DSP</font>编程技巧之3:揭开编译器神秘面纱之程序优化
DSP与以太网卡的接口技术研究
    摘要: 通过分析NE2000网卡与微机ISA总线的接口电路,用DSP芯片TMS320F206结合外围电路模拟ISA时序,实现了DSP与NE2000网卡的软、硬件接口,从而使ISA总线开型网卡脱离了PC机环境的制约。     关键词: 网卡  ISA总线  DSP 以太网是当今最受欢迎的局域网之一,它包括了OSI七层模型的物理层和数据链路层的全部内容 。在以太网中,网卡用于实现802.3规程,其代表是NOVELL公司的NE2000和3COM公司的3C503、3C508、3C509等网卡。对网卡直接编程就可以实现局域网内任意站点之间的通信而完全抛开了网络操作系统,这就启发我们能否在脱离PC环境的条件下实现
[应用]
MCU与DSP的SPI通信设计
引言 现今的工控系统中,为了提高系统的实时性和适用性,一般采用DSP来完成核心算法与控制,而使用MCU来实现人机对话,以实现实时控制功能。这样,DSP和MCU需要一种高效的数据总线来完成它们之间的大量数据传送。SPI总线由于占用的接口线少,通信效率高,并且大部分处理器芯片都支持,因而是一种理想的设计方案。 针对交流伺服系统实际使用的要求,采用TI公司的高性能DSP控制器TMS320LF2407A(简称“2407A”)作为控制核心;选用TI公司生产的MSP430系列单片机中的MSP430F149作为人机界面的控制芯片,来实现按键和数据采集以及显示的功能;采用SPI串口通信实现单片机与DSP之间的数据传输。 1系统硬件的构
[单片机]
MCU与<font color='red'>DSP</font>的SPI通信设计
CEVA凭SensPro Sensor Hub DSP协助客户有效实现传感器融合
众所周知,传感器在配合使用时效果最佳。对于同步定位与地图构建 (SLAM) 来说更是如此。SLAM 在 AR/VR 领域扮演着重要的角色,可以根据用户的姿势调整场景,避免无人机或机器人这样的应用在使用过程中的碰撞,用途广泛。SLAM市场预计到2023年将增长至4.65亿美元,年复合增长率为36%,为大多数开发者提供了绝佳机遇。在手机上将 SLAM 应用于室内导航可能会在规模庞大的基础平台市场中占据主导地位。GPS 不能在室内工作,基于信标的导航只能在具有信标基础设施的区域工作。而 SLAM 则可以在任何提供室内地图的地方工作,符合大多数楼宇自控管理系统的低成本期望。将该区域的场景与用户在该区域行走时的姿势和运动融合到了一起,使得在
[手机便携]
CEVA凭SensPro Sensor Hub <font color='red'>DSP</font>协助客户有效实现传感器融合
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved