基于FPGA的高速宽带跳频发射机的中频设计

发布者:RadiantGaze最新更新时间:2010-11-23 来源: 维库关键字:FPGA  跳频通信  DSP  基带调制  NCO 手机看文章 扫描二维码
随时随地手机看文章

  引言

  跳频通信是在恶劣的电磁环境中保证正常通信的主要手段。提高跳频通信系统的跳频速率和跳频带宽可以有利于对抗单频窄带干扰,频带阻塞干扰以及跟踪干扰,是提高跳频通信系统抗干扰能力的主要手段。

  传统的跳频发射机是通过模拟本振的跳变或切换来实现跳频的功能。采用模拟本振跳变的方案跳频速率受本振频率切换速率的影响;采用本振切换的方案,至少需要两个模拟本振和一个高速模拟开关进行乒乓切换,外围电路较复杂,且灵活性较差。本文根据软件无线电的设计思想,将基带调制,数字上变频,以及跳频控制用数字化的形式在FPGA内部实现,只需通过改变FPGA内部数控振荡器的输出频率就可以实现高速宽带跳频。这样避免了模拟本振的高速跳变,提高了跳频速率,简化了系统硬件结构,同时还增强了系统的灵活性。

  本方案采用EP3C16F4 84C6作为跳频发射机的中频信号处理器,其处理能力最高可达几十吉乘累加运算,并且具有最高可达840Mbps的高速LVDS接口。DA转换器采用AD9736,具有14bit精度,1.2GSPS转换速率。该高速宽带跳频发射机具有高度灵活性,其中跳频图案,跳频数,跳时,以及发送消息等参数由DSP实时生成。并对FPGA进行配置。系统整体结构如图 1所示:

  图 1 系统结构框图

  2 FPGA设计与实现

  2.1 存储器设计

  FPGA内部存储器用于与DSP进行数据交换。存储器分为:发送消息存储区,发送频率控制字存储区,跳时寄存器,跳频数寄存器。地址分配如表1所示:

  表1 FPGA内部存储器分配表[page]

  2.2 MSK调制

  2.2.1 通用调制模型

  软件无线电调制技术要求能够在通用的数字信号处理平台上,实现多种不同体制的调制方法,这就需要设计出一种通用的调制器结构。正交调制一般可以用式1表示:

  其中为基带信号的同相分量和正交分量,它们是由调制方式决定的。为载波的角频率。根据上式,我们可以得出正交调制的实现结构如图2所示:

  图 2 正交调制原理框图

  基带调制根据不同的调制方式选择不同的方法。成形滤波用来抑制频谱的旁瓣,以达到特定的频谱带宽要求。插值用来进行采样率变换,使得数据速率与NCO输出数据速率相同,进行载波调制。最后取IQ两路复信号的实部输出即得中频已调信号。

  本系统基带调制采用最小频移键控,即MSK调制,输入码元速率为5Mbps。由于FPGA处理能力较强,可以选择相对较高的数据速率,这样可以降低数字上变频的复杂度。但同时会增加基带成形滤波器设计的复杂度,需要折中考虑。本系统选择基带数据速率为25M/B。

  成形滤波器采用最优化设计中的等波纹法设计,设计指标如下:采样率25MHZ,通带截止频率为3.75MHZ,阻带截止频率5MHZ。通带波纹0.2dB,阻带衰减80dB。利用FDATool工具进行滤波器的设计,系数量化为定点16bit,阻带衰减可以达到75dB以上。

  2.3 数字上变频

  2.3.1 内插

  完成基带调制和成形滤波后,FPGA内部数据速率为25MSPS,然后需要进行数字上变频,最终使数据速率达到AD9736的数据转换速率,即800MSPS。由25MSPS到800MSPS需要进行32倍内插,如果用一次内插实现,需要插值滤波器具有很高的阶数,其计算量和存储空间都比较大。在这种情况下,一般采用多级内插,多级实现的主要优点是:

  (1). 大大减少了计算量;

  (2). 减少了系统内的存储量;

  (3). 简化了滤波器的设计;

  (4). 降低了实现滤波器时的有限字长的影响,即降低了舍入噪声和系数灵敏度。

  多级内插的缺点是增加了控制程序的复杂程度,所以并不是分级越多越好所以在设计时应该折中考虑。一般来说,3至4级插值对于降低运算量和存储量的帮助很明显,级数再多时,效果就不明显了。这里我们将插值分为4级,分别为2倍,2倍,2倍,4倍。抗镜像低通滤波器都采用等波纹设计,考虑到滤波器性能和资源占用的折中,需要利用MATLAB仿真确定各级滤波器的阶数和系数位宽。

  经过三级2倍内插后,FPGA内部数据速率达到200MSPS,基本已经达到了Cyclone III内部处理能力的极限,最后一级利用多相结构,完成串并转换,输入200MSPS数据速率,4倍内插后,输出四路,各路均为200MSPS数据速率。下面以4倍内插,8阶低通滤波器来说明多相滤波器的原理。

  由于在内插的过程中插入的0值与系数相乘是没有意义的,所以对于4倍内插,8阶低通滤波器来说每次滤波只需要2次乘法。这样就将乘法的运算量降低为原来的1/4。滤波器每次输入一个新的数据,就用4个子滤波器分别计算一次,然后以4倍的输入速率顺序输出。所以可以用4个子滤波器组成的滤波器组实现多相插值滤波。[page]

  2.3.2 并行数控振荡器

  完成插值后,数据速率达到并行4路,每路各200MSPS。然后进行载波调制。最后,利用LVDS模块进行并串转换,实现800MSPS MSK调制输出。

  由于FPGA内部处理能力的限制,用于载波调制的NCO也需要设计为并行结构。载波调制的实现框图如图3所示:

  图 3  4路并行载波调制结构图

  为了保证NCO输出波形具有较高的杂散抑制比,同时要占用较少的资源,一般采用插值法。插值法结合了查表法和计算法的优点,在保证频谱具有较高杂散抑制比的同时占用较少的资源。

  插值法是指利用相位累加器的高位进行查表,用相位累加器的低位进行插值运算,这样使用相位累加器的有效位数较差,保证相位舍位噪声较小,同时也降低了存储器的大小。

  最简单且有效的插值法为一次线性插值,计算公式如下:

  其中要插值的数据y位于之间, 为斜率,到y的水平距离。FPGA实现一次线性插值需要一次乘法,两次加法,以及一次移位运算。避免了占用过多的存储器资源。[page]

  图4是插值法NCO的实现框图:

  图 4 插值NCO实现结构图

  本设计要求NCO输出数据速率为800MSPS,采用4路并行设计,每一路输出数据速率均为200MSPS。这样需要4个NCO模块。每个子NCO模块的频率控制字是对于整体800MSPS数据速率NCO频率控制字的4倍。且每个子NCO的初始相位相差一个整体NCOd的频率控制字。例如,要产生200M的正弦和余弦信号。计算得整体NCO的频率控制字为:

  4路子NCO的频率控制字均为:。4路子NCO初始相位相差

  2.3.3 并串转换

  并串转换通常应用在FPGA内部单路串行处理速度不能满足要求的情况下,需要使用多路并行低速模块实现高速处理,属于资源与速度互换的一种应用。本设计需要用800MSPS与DAC接口,而FPGA内部最高频率仅为250M左右,所以在FPGA利用并行4路,每路200MSPS,实现串行800MSPS的处理能力。这就需要在输出时需要进行并串转换。利用ALTERA提供的LVDS模块可以很容易的实现并串转换。

  2.4 测试与验证

  完成各个模块设计和仿真验证后,在顶层文件中调用各个子模块,实现一个完整的MSK宽带跳频发射机。在Modelsim中进行功能仿真的波形如图5所示。

  图 5 跳频发射机系统Modelsim仿真波形

  图5中从上到下的信号分别为:码元输入 ;差分编码输出;串并转换后I路输出;串并转换后Q路输出;基带调制后I路输出,I路内插到4路并行200MS/S数据速率时,其中1路输出;4路并行NCO,其中1路输出;MSK调制输出。[page]

  编译完成后将程序下载到跳频发射板,使用HP8563e频谱仪观察产生信号频谱,如图6和图7所示。

  图6为单频点MSK调制频谱图。图中中心频率为150MHz,屏幕显示带宽为30MHz。从图中可以看出经成形后的MSK频谱带宽为10MHz左右,带外衰减大于60dB。满足设计要求。

  图7为跳频频谱图。跳频频率范围为95MHz ~ 255MHz。其*51个频点,相邻频点中心频率间隔为3MHz。由于FPGA输出数据速率为800MSPS,所以工程上可实现320MHz带宽。

  图 6 MSK单频点频谱图

  图 7 跳频频谱图

  本设计给出一种通用软件无线电跳频发射机的硬件平台,以及基带和中频信号处理算法。对于研究FPGA在软件无线电跳频发射系统中的应用具有现实意义。

关键字:FPGA  跳频通信  DSP  基带调制  NCO 引用地址:基于FPGA的高速宽带跳频发射机的中频设计

上一篇:Turbo简化译码算法的FPGA设计与实现
下一篇:Altera在SPS/IPC/DRIVES 2010上展示下一代嵌入式工业网络、电机控制和安全解决方案

推荐阅读最新更新时间:2024-05-02 21:12

LEON2应用于DCPU的FPGA仿真
近年来,随着数字多媒体业务和Internet网络的迅速发展,新型数字机顶盒可以有效利用我国巨大的有线电视网络资源,完成视频点播、数字电视的接收及接入Internet等综合业务功能。  1 数字机顶盒总体设计方案  数字机顶盒分为两个通道,下行通道接收来自电缆或光纤的有线电视信号,上行通道传输从客户端到服务器端的指令。 下行通道方案如图1所示,调谐器接收来自有线网的高频信号,通过QAM解调器完成信道解码,从载波中分离出包含音、视频和其他数据信息的传送流(TS)。传送流中一般包含多个音、视频流及一些数据信息。解复用器则用来区分不同的节目,提取相应的音、视频流和数据流,送入MPEG一2解码器和相应的解析软件,完成数字信息的还原。对于付费
[工业控制]
基于DSP和CPLD技术的多路ADC系统的设计
引言 --- 随着现代电子技术的应用和发展,数字信号处理的内容日益复杂,而ADC是实现从模拟到数字转换的一个必然过程。针对这种情况,利用数字信号处理器和可编程逻辑器件提出了多路ADC系统的设计方法,实现了对动态多路模拟输入信号的采样传输以及处理,简化了电路设计,可编程逻辑器件使得系统的通用性和可移植性得到良好的扩展。系统框图如图1所示。 系统硬件设计   本设计所采用的ADC器件是MAXIM公司的生产的低功耗16位模数转换器(ADC)MAX1162。MAX1162采用逐次逼近型ADC结构,具有自动关断、1.1μs快速唤醒和兼容于SPI/QSPI/MICROWIRE的高速接口,采用+5V单模拟电源,并且具有独立的数字电源引脚,允
[模拟电子]
基于DSP Builder数字信号处理器FPGA设计
DSP技术广泛应用于各个领域,但传统的数字信号处理器由于以顺序方式工作使得数据处理速度较低,且在功能重构及应用目标的修改方面缺乏灵活性。而使用具有并行处理特性的FPGA实现数字信号处理系统,具有很强的实时性和灵活性,因此利用FPGA实现数字信号处理成为数字信号处理领域的一种新的趋势。 以往基于FPGA的数字信号处理系统的模型及算法采用VHDL或VerilogHDL等硬件描述语言描述。但这些硬件描述语言往往比较复杂,而采用Altera公司推出的专门针对数字信号处理器设计工具DSP BuildIer则可大大简化设计过程,提高设计效率。 1 基于DSP Builder的数字信号处理器设计流程 DSP Builder是一个系统级(或者说算
[嵌入式]
基于<font color='red'>DSP</font> Builder<font color='red'>数字信号处理器</font>的<font color='red'>FPGA</font>设计
一种基于FPGA的高速误码测试仪的设计
误码分析仪作为数字通信系统验收、维护和故障查询的理想工具,广泛应用于同轴电缆、光纤、卫星及局间中继等符合CEPT(European Confence of Postal and Telecommunications Administrations)数字系列通信系统传输质量的监测。评价一个通信系统的可靠性的指标就是检测该通信系统在数据传输过程中误码率的大小,本文设计的高速信号误码测试仪,用于对EPON中接收和发送突发光信号的接收模块的可靠性进行检测。目前误码分析仪的工作模式已发展到如下4种:分析仪模式、发生器模式、分析仪/发生器模式、直通模式。本设计中的误码测试仪属于第3种类型,即该误码测试仪可以产生测试的码流,又可以进行误码测试。
[测试测量]
一种基于<font color='red'>FPGA</font>的高速误码测试仪的设计
莱迪思将展示专为移动应用创新而设计的FPGA
    莱迪思半导体公司近日宣布将于1月8日至11日在拉斯维加斯举办的消费电子展(CES)上召开一个见面会,届时将展示一些新的基于FPGA的设计解决方案,适用于消费电子和移动设备。莱迪思展示厅位于拉斯维加斯酒店东楼2980号套房。若您希望预约一个时间来参观莱迪思展厅,并探讨移动创新可以如何帮助您解决具体的设计难题,请点击莱迪思移动应用创新进行注册。 Lattice的iCE40™和MachXO2™ FPGA因其小尺寸、低功耗和低成本等优点,广泛用于移动设备和消费类电子产品,如智能手机、平板电脑、电子阅读器、数码相机和平板电视等。可编程FPGA是一种理想的设计方案,适用于迅速变化的消费电子市场,这些器件使制造商能够快速、轻松地在其
[嵌入式]
飞思卡尔具高级安全功能的新MSC8144 DSP
      基于StarCore 技术的行业领先 MSC8144四核 DSP 将进入样产阶段   2007年2月28日-德克萨斯州奥斯汀讯 -随着整个市场继续向融合的全IP (互联网协议)网络演进,原始设备制造商(OEM)们面临着如何开发可靠的网络和器件的挑战。为了迎接这些挑战,飞思卡尔半导体宣布推出面向MSC8144(业内性能最高的可编程 DSP 平台)的集成安全加速和创新代码保护机件。   这种新型MSC8144E器件可以为固定和移动接入网络中广泛使用的安全协议提供硬件加速功能,而最新的 MSC8144EC 则可通过帮助防止复制或克隆嵌入式软件来保护OEM 软件和知识产权。新器件MSC8144E和MSC8144EC的样品
[嵌入式]
S2C陈睦仁:依托中国 放眼世界
“现在对于SoC厂商来说,是一个战国时代,要想取胜必须要占得市场先机,作为我们工具商来说,也是希望可以给用户提供最好的平台化产品。”S2C董事长及首席技术官陈睦仁在2012第五届SoCIP研讨会上说道。 陈睦仁表示,现在全球都在衰退,但惟独中国的IC产业在发展,主要是源于中国移动终端市场的迅猛发展,而S2C也刚好赶上了这个机遇,毕竟S2C的大客户几乎都是移动处理器相关厂商。 由于移动处理器对于产品的time market要求严苛,这使得FPGA原型验证板变得非常重要,一方面移动处理器越来越复杂,单凭软件验证效率非常之低,很多厂商都采用FPGA硬件原型验证工具,同时,移动处理器对于操作系统或软件的要求高,这也使采用原型验证板的厂
[半导体设计/制造]
车载AI芯片之争,架构&参数
自动驾驶时代,AI 芯片 异军突起。 车载AI芯片作为自动驾驶汽车的“大脑”,承担着最艰巨复杂的任务。然而目前车载芯片市场玩家众多,芯片架构也纷繁复杂。从传统汽车到自动驾驶,车载芯片发什了什么变化?本文将带你了解车载AI芯片的发展趋势与参数分析。 车载芯片发展趋势 早期,汽车通常以分布式ECU架构为主,每个模块都拥有单独的ECU(电子控制单元)。随着汽车电子的发展,越来越多的复杂功能被集成到汽车上,区域中心化架构与整车中心化架构的比例逐年提高。目前,整车中心化架构已经成为智能车的主流架构与发展趋势,对域控制芯片的要求也在提升。 汽车架构对比 图源:国信证券 在智能驾驶汽车普及之前,传统汽车通常采用MCU作为
[汽车电子]
车载AI芯片之争,架构&参数
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved