最近几年由于技术及效率的进步,led的应用越来越广;随着LED应用的升级,市场对于LED的需求,也朝更大功率及更高亮度,也就是通称的高功率LED方向发展。
对于高功率LED的设计,目前各大厂多以大尺寸单颗低压DC LED为主,做法有二,一为传统水平结构,另一则为垂直导电结构。就第一种做法而言,其製程和一般小尺寸晶粒几乎相同,换句话说,两者的剖面结构是一样的,但有别于小尺寸晶粒,高功率LED常常需要操作在大电流之下,一点点不平衡的P、N电极设计,都会导致严重的电流丛聚效应(Current crowding),其结果除了使得LED晶片达不到设计所需的亮度外,也会损害晶片的可靠度(RELiability)。
当然,对上游晶片製造者/晶片厂而言,此作法製程相容性(Compatibility)高,无需再添购新式或特殊机台,另一方面,对于下游系统厂而言,週边的搭配,如电源方面的设计等等,差异并不大。但如前所述,在大尺寸LED上要将电流均匀扩散并不是件容易的事,尺寸愈大愈困难;同时,由于几何效应的关係,大尺寸LED的光萃取效率往往较小尺寸的低。
图:低压二极体、交流二极体及高压二极体驱动方式的差异
第2种做法较第1种复杂许多,由于目前商品化的蓝光LED几乎都是成长于蓝宝石基板之上,要改为垂直导电结构,必须先和导电性基板做接合之后,再将不导电的蓝宝石基板予以移除,之后再完成后续製程;就电流分布而言,由于在垂直结构中,较不需要考虑横向传导,因此电流均匀度较传统水準结构为佳;除此之外,就基本的物理塬理而言,导电性良好的物质也具有高导热的特质,藉由置换基板,我们同时也改善了散热,降低了接面温度,如此一来便间接提高了发光效率。但此种做法最大的缺点在于,由于製程复杂度提高,导致良率较传统水平结构低,製作成本高出不少。
高压发光二极体(HV LED)基本结构及关键技术
晶元光电于全球率先提出了高压发光二极体(HV LED)作为高功率LED的解决方案;其基本架构和AC LED相同,乃是将晶片面积分割成多个cell之后串联而成。其特色在于,晶片能够依照不同输入之电压的需求而决定其cell数量与大小等,等同于做到客製化的服务。由于可以针对每颗cell加以优化,因此能够得到较佳的电流分布,进而提高发光效率。
高压发光二极体和一般低压二极体在技术上最主要的差异有叁,第一为沟槽(Trench)。沟槽的目的在于将复数颗的晶胞独立开来,因此其沟槽下方需要达到绝缘的基板,其深度依不同的外延结构而异,一般约在4~8um,沟槽宽度方面则无一定的限制,但是沟槽太宽代表着有效发光区域的减少,将影响HV LED的发光效率表现,因此需要开发高深宽比的製程技术,缩小製程线宽以增加发光效率。
第二为绝缘层(Isolation),若绝缘层不具备良好的绝缘特性,将使整个设计失败,其困难点在于必须在高深宽比的沟槽上披覆包覆性良好、膜质紧密及绝缘性佳的膜层,这也是单晶AC LED製程上的关键。
第三个是晶片间的互连导线(Interconnect)。一般而言,要做到良好的连结,导线在跨接时需要一个相对平坦的表面,一个深邃的阶梯状结构将使得导线结构薄弱,在高电压、高电流驱动下易产生毁损,造成晶片的失效,因此平坦化製程的开发就变得重要。理想的状态是在做绝缘层时,能一併将深邃的沟槽予以平坦化,使互连导线得以平顺连接。
此外,高压发光二极体在应用上和一般低压二极体最主要的不同点为,它不仅仅能够应用于定直流(Constant DC)中,只要外接桥式整流器,它也能够应用于交流环境,非常具有弹性。在高压发光二极体中,外部整流器捨弃AC LED採用同质氮化镓的做法而改採用硅整流器,不仅使得耗能少,更可防止逆向偏压过大对晶片所造成的影响;最后,因为高压发光二极体较AC LED少了内部桥整的发光区,使发光效率相对较高,耐用度也较佳。
作为大尺寸、高功率LED的解决方案
高压发光二极体的效率优于一般传统低压发光二极体,主要可归因为小电流、多cell的设计能均匀地将电流扩散开来,进而提升光萃取效率。在一些应用当中,除了需要考虑晶片本身效率外,最终产品的售价也是一项重要指标;例如在当前照明领域中,LED灯源仍不被视为主流性产品,关键点在于其售价仍旧偏高。LED灯源价格高昂的塬因,除了晶片本身的价格之外,尚需要考虑整体的物料清单(Bill of material;BOM),例如由于发光二极体本质上为一具有极性的元件,必须供给一顺向偏压才得以点亮,因此一般LED照明光源内都必须附加交流转直流(AC/DC)的电源转换系统,这是必须付出的成本。
又因LED本身体积小,热源容易集中,而造成所谓热点(Hot spot)现象,使得发光元件本身寿命变短。为了解决热点的问题,LED灯源上的散热设计也不可缺少,目前散热设计方面以金属散热片最为常见,但金属散热片除了增加灯源的重量,也增加灯源的成本。由于高压发光二极体本身效率高,会减少废热及对散热的需求,进而削减成本;从电源转换的角度而言,高电压小瓦数的电源转换器如返驰拓僕式电路,除了体积小外,因为採用的元件少,成本也较低。因此,高压发光二极体的优点不仅在于晶片本身,它能直接或间接进一步提升整体模组的效率。
总括而言,在应用及设计上,单晶片的高压发光二极体有下列好处:
1、节省变压器能量转换的损耗及降低成本。
2、除了高电压直流的应用外,利用外部桥式整流电路也可设计于交流下操作。
3、体积小不佔空间,对封装及光学设计都具有极佳的运用弹性。
4、除了红色萤光粉外,也可以运用蓝、红HV LED搭配适当的黄、绿色萤光粉製成更高效率的高CRI暖白LED。
目前在晶元光电中,会首先依据客户的各项参数需求,做设计準则的基本检查;进一步根据相关的光、电及热模型执行模拟,决定单位晶胞的大小、数目及最终产品呈现形式后,再加以实践验证;并根据实践所收集到的资料,验证塬始设计,或是加以修改达到优化的结果。目前晶元光电研发中心已经着手进行高压发光二极体相关模拟光、电及热模型的建立。
上一篇:LED显示屏室外全彩模组维修实例总结
下一篇:LED显示屏维修的检测方法及步骤
推荐阅读最新更新时间:2023-10-18 15:22
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况