正是所谓的有机发光二极体,其最大特色在于它是自发光体,因此不需要背光源( Backlight )及彩色滤光片( Color Filter )等构造,因此能够比 LCD 的厚度更薄。此外,更宽广的视角、反应速度快、低驱动电压、色彩与对比也相对比 LCD 高、理论上可达到更低耗电以 及制程更简单等优势,让 OLED 成为继 LCD 后最被看好的显示技术明星。但 OLED 也寿命比 LCD 短的缺点,这是因为 OLED 是电流驱动的自发光体,因此其材料与原件的寿命相对的缩短。
OLED 的电源规格需求
一般小尺寸的 OLED 的电源,需一组正电压( Vdd )输出,与一组负电压( Vss )输入,而电源的架构,可分为数位相机与手机的架构两种。数位相机的电源规格其 Vdd 电压范围 为 3V 至 6V ,而 Vss 电压范围为 -7V 至 -10V 。手机的电源规格其 Vdd 电压范围大约为 2.5V ,而 Vss 电压范围为 -7V 至 -10V 。而这两种产品 的输入电源通常为一颗锂电池,所以电压范围大约为 3V 至 4.2V 。
数位相机 Vdd 的解决办法
由于数位相机的 Vdd 电压范围为 3V 至 6V ,所以 Vdd 电源架构应该是 Buck/Boost 或是 Boost 的架构。如果一时找不到 Buck/Boost 架构的电源输出,也可利用非常普遍的 Buck 架构来设计成 Buck/Boost 架构。只要利用一组普通的降压电源控制 IC ,外加一 MOSFET 及一输出二极体便能设计成 Buck/Boost 输出,如图 1 所示。这个稳压器的工作原理是当 Lx 为高电压时,电感电流随 Vin/L 的斜率而增 加。而 Lx 为低电压时,电感电流便随( Vout+VD ) /L 的斜率而减少。输入和输出的电流为断续的方式,它允许输出电压比输入电压更大或者更小。其输出 电压是输入电压和周期功率的函数:
以及周期功率算式为:
此主题相关图片如下:
此主题相关图片如下:
图 1 利用降压电源 IC 设计成升降压型
从 上述的式子可得知输出电压与输入电压和周期的关系,想得到较高或较低的输出电压只要控制 1/1-D 的比值大小即可。设计者也可以直接使用一组 Buck/Boost 电源 IC ,来产生所需的电压输出,如图 2 便是一组直接昇降压的 IC 。其结合一组升压转换器与线性稳压器来提供可升压也可降压的电压转 换器。这个转换器为输出电压以下和超出的输入提供一个稳定的输出电压。它可从 1.8V 到 11V 输入范围和预置 3.3V 或者 5V 的输出。也能够把这个输出电 压使用两个电阻分压从 1.25V 至 5.5V ,其效率大致上可高达 85% 。如果需要的输出电压是在 3.5V 至 4V 之间,可以用组合的方式来产生一组升降压的 输出,设计者只需要一组升压转换器与一组线性稳压器便行,例如 MAX1606 升压转换器与 MAX8512 线性稳压器的组合。
此主题相关图片如下:
图 2 升降压型电源 IC
如 果因为成本的考量,那 Charge-Pump 的架构正适合低成本的解决方案,其架构可省一电感与一输出二极体,例如 MAX1759 是以 Charge-Pump 方式产生一组可升降压的输出电压。而 Maxim 的独特 Change-Pump 架构容许输入电压可高于或低于输出电压。尽管它的工作 频率高于 1.5MHz ,一样保持低至 50uA 的静态供应电流。
有 些设计者因为考虑到高效率,而选择以升压方式产生一组输入高于输出电压来提高效率,如图 3 的升压架构,由于需外加 MOSFET 作切换开关,因此可 提供较大的输出功率。如果是因为空间的限制,外加 MOSFET 开关以及输出二极体就会成为设计者的负担,此时内建 MOSFET 切换开关与输出二极体的升压 DC-DC 转换器例如 MAX1722 ,就适合于此应用中,不仅省空间、效能好,更能省成本。
此主题相关图片如下:
图 3 升压型电源转换器
手机 Vdd 的解决办法
因 此选择以 Buck 方式提供 Vdd 所需的电压。如图 4 便是一组内建 MOSFET 切换开关的同步降压结构的直流转换器,可提供 400mA 的输出电流。而且工作频率高达 1.2MHz ,设计者可选用小尺寸的电感,与输出电容,效率同样高达 90% 以上。
此主题相关图片如下:
图 4 降压型电源转换器
负电压 Vss 的解决办法
介 绍 OLED 的正电压 Vdd 输出之后,接着介绍 OLED 的负电 Vss 输出。就如同前文所叙述,如果设计者临时找不到合适的负电压输出电源 IC ,亦可 使用 Buck 架构的电源 IC 。如图 5 以漂浮接地线架构来产生负电压 Vss ,其原理为:透过正常的输出,连接在供给电压地线上,迫使转换器的地线稳压而产生 一组负电压输出,如果需要不同的输出电压,只要以两颗电阻跨接输出电容。
上一篇:TI(NS)LM3549高效大功率RGBLED驱动方案
下一篇:LED照明突出优点及广泛的用途
推荐阅读最新更新时间:2023-10-18 16:09
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- Vicor高性能电源模块助力低空航空电子设备和 EVTOL的发展
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源
- 申请ST NUCLEO-G071RB测评,给你最佳性价比体验
- 有奖直播|Keysight World 2020【电信基础设施、云与人工智能分论坛】
- 有奖直播|TI DLP® 技术如何推动AR HUD和汽车大灯的发展
- 【EEWORLD第三十七届】2012年04月社区明星人物揭晓!
- 家电新风尚,PI开启您的家电新生活!下载产品资料答题赢好礼!
- Microchip科技大片:触摸解决方案的一天!
- 电子书下载|ADI 触摸屏测试解决方案
- 全新吉时利4200A SCS参数分析仪震撼上市,邀您参与翻盖有礼!
- 下载有礼|西北模电王《新概念模拟电路》全五册
- 《CoolSiC™英飞凌最佳的伺服驱动解决方案》白皮书下载