LED背光boost驱动器

最新更新时间:2011-12-24来源: 电子发烧友关键字:LED背光  boost  驱动器 手机看文章 扫描二维码
随时随地手机看文章

LED背光boost驱动器

Abstract: This is a reference design for an LED display-backlight driver. The design uses a boost power supply with adaptive feedback for efficiency and linear current sinks for a high dimming ratio (2000:1). The input voltage is 8V to 18V with 50V transients, and the load is three parallel strings of 8 LEDs (34V) at 150mA/string. The MAX16809 16-channel LED driver is featured. 

This reference design is an LED backlight driver for a TFT display. The electrical input requirements and output capabilities follow:

VIN: 8VDC (at 1.667A) to 18VDC (at 730mA); tolerant to 50VDC transients
PWMIN: 250Hz pulse train; 2µs (min) pulse; > 3.3VDC at 0mA; < 0.3VDC at 10mA
VLED config.: 6 or 8 LEDs (2.89VDC to 4.2VDC) in series (34VDC max); three parallel strings, 150mA per string

Figure 1. The driver board features the MAX16809.
Figure 1. The driver board features the MAX16809.

Figure 2. Schematic of the driver design.
More detailed image (PDF, 6.61kB)
Figure 2. Schematic of the driver design.

Figure 3. Layout of the driver design.
Figure 3. Layout of the driver design.

Brief Circuit Description

This reference design uses the MAX16809 as a central controller for a boost power supply and a 16-port LED driver. Fifteen of the sixteen ports are grouped into units of five to drive three parallel strings of LEDs. With boost power supplies the output voltage is always greater than the input power-supply voltage. The boost power supply operates at a frequency of 200kHz, which is fast enough for small power components and yet slow enough to prevent overheating the switching MOSFET. 

The design uses two low-ESR, electrolytic capacitors on the output. These capacitors are necessary to absorb the inductive energy of the power supply when the PWM signal shuts the load to zero. The output voltage for the LED strings is available through a 4-pin header. VLED+ is pin 1 of the header, while pins 2, 3, and 4 are the VLED- pins. Pads for output filter capacitors are available if desired; they are presently not populated. The Q2-D2-R8 circuit provides slope compensation for the current-mode PWM controller. This circuit, which follows the RTCT ramp voltage, injects current into R7and thus creates a ramp voltage that helps prevent subharmonic oscillation of the controller at duty cycles greater than 50% (when the input voltage is at the lower end).

The boost feedback path has two modes: adaptive and resting. The adaptive mode (when the PWM signal is high) will "diode-OR" the outputs so that the lowest driver voltage (largest series LED string voltage) is regulated to about 1.0VDC. This provides enough headroom for proper operation of the LED driver. Other LEDs strings will have a lower series voltage, and thus the drivers will have greater headroom. Adaptive mode minimizes the power dissipation caused by the linear LED drivers. For this approach to work, although the absolute LED voltage drop is not critical, the relative forward voltages must be matched to within 200mV of each other. To dissipate the heat, the MAX16809 must have a good thermal connection to large copper planes using thermal vias beneath the exposed pad of the package. On this board, the bottom plane provides cooling to the IC, but multiplane grounds with larger surface areas will dissipate the heat even better.

In the resting mode (when the PWM signal is low), VLED is regulated like a conventional power supply; the voltage rises to a value that will guarantee operation for very short pulses. Since the power-supply magnetics cannot charge quickly enough for short pulses, all of the energy must originate from the output capacitors. The resting mode ensures that the capacitors are charged enough to sustain this energy until the magnetics can respond. Ironically, the input current may surge more at the beginning of the resting mode than during the adaptive mode. This happens because the large output capacitors need to be charged. For much of the on-time, the adaptive energy comes solely from the output capacitors, the switcher rests, and the input current drops to zero.

Zener diode, D10, provides overvoltage protection to the circuit. If an LED string becomes disconnected, the adaptive voltage control would attempt to increase VLED to satisfy the 1.0VDC requirement. D10 limits the output voltage to 38.5VDC. While this voltage will not harm the circuit, the resulting power dissipation in the LED drivers will overheat the MAX16809. If this occurs, the chip's internal circuitry will power the drivers down until the temperature is reduced. The resulting effect is LED blinking. For 6S3P operation, install a jumper on connector, J3, which will place D6 in parallel with D10 and lower the clamp voltage to 29VDC.

The LED drivers are set to 30mA through R5 (576Ω). By paralleling five drivers per LED string, the IC provides 150mA per string.

A Schmitt-triggered inverter, U2, is configured as an oscillator to provide a clock to the SPI™ input of the MAX16809. Since DIN is connected high, a string of "1s" is clocked into internal registers which enables all the LED drivers. U2 also inverts the PWM signal to meet the requirements of the MAX16809 OE# input.

U3 (a MAX6397TATA overvoltage protection circuit) provides input protection to the circuit during a load dump, and provides a 3.3VDC power supply for the linear drivers in the MAX16809. R15/R16 set the shutdown voltage to a nominal voltage of 18.85VDC. Q3 is sized for minimal drop at low-input voltages. At full load, the nominal minimum operating voltage was measured at 7.82VDC. The REG output supplies 3.3VDC to the MAX16809's linear drivers (V+ input), to U2, and to the R11 pullup resistor.

Test and Performance Results

Figure 4. MOSFET current and voltages with VIN = 18V and with VIN = 36V.
Figure 4. MOSFET current and voltages with VIN = 18V and with VIN = 36V.

Figure 5. VLED and input current with 1µs pulse and with a 1ms pulse. VLED alternates between resting mode and adaptive mode. Note that the input current surges to provide a charge to the output capacitor during the resting mode.
Figure 5. VLED and input current with 1µs pulse and with a 1ms pulse. VLED alternates between resting mode and adaptive mode. Note that the input current surges to provide a charge to the output capacitor during the resting mode.

Figure 6. VLED and input current with a 2ms pulse and with a 3.9ms pulse.
Figure 6. VLED and input current with a 2ms pulse and with a 3.9ms pulse.

Temperature Measurements

The following temperatures were measured using loads provided by OSRAM:

VIN 8VDC
Ambient +20°C
TU1 +38°C
TU3 +36°C
TQ1 +37°C
TQ3 +34°C
TL1 +37°C
TD1 +37°C

VIN 36VDC
Ambient +20°C
TU1 +39°C
TU3 +45°C
TQ1 +32°C
TQ3 +31°C
TL1 +31°C
TD1 +39°C

Power-Up Procedure

  1. Attach three strings of 8 LEDs to output connector J1. Alternatively, you can attach three strings of 6 LEDs, if there is a jumper on connector J3.
  2. The positive side of the LED strings must be attached to pin1 of J1; the negative side of the three LED strings must be attached to pins 2, 3. and 4 of J1.
  3. Attach an unpowered 8V to 20V (4A rating) to the input wire loops. Be sure to match the correct polarity.
  4. Turn on the power to the circuit.
  5. Apply a 250Hz pulse wave to J4. The pulse wave must vary from 0V to 3.3V; the duty cycle can go from 0.05% to 100%.
  6. Large vias on either side of the current sense resistor, R3, allow for low-noise probing using a ground coil and a single-ended scope probe.
关键字:LED背光  boost  驱动器 编辑:探路者 引用地址:LED背光boost驱动器

上一篇:LED背光SEPIC驱动器
下一篇:LED信号灯驱动器参考设计

推荐阅读最新更新时间:2023-10-18 16:16

凌特新款LED显示屏驱动器面向手机等应用
凌特公司(Linear Technology)日前推出高度集成的850kHz、低噪声、高效率1x/1.5x/2x多模式充电泵LTC3209-1和LTC3209-2,以用于驱动移动电话的主、相机和辅助LED显示屏。这两款器件每个都能以高达600mA的总输出电流驱动多达8个LED电流源。 LTC3209-1能以驱动多达6个LED的主显示屏、一个LED的相机显示屏和一个LED的辅助显示屏;而LTC3209-2可以驱动多达5个LED的主显示屏、两个LED的相机显示屏和一个LED的辅助显示屏。这两款器件都采用紧凑的4x4mm QFN封装。每个显示屏都可进行数字控制,并通过两线I2C串行接口实现独立调光和编程。 LTC3209-1
[新品]
先升压后降压 LED 驱动器利用宽广的输入电压实现宽 PWM 调光范围
多通道 LED 驱动器主要是为采用单个 IC 来给多个 LED 或多个 LED 灯串 (这些灯串有时具有不同的色彩或长度) 供电而设计的。然而,此类驱动器包括了诸多的特性,可实现其他引人注目的用途。例如,LT3797 三通道 LED 驱动器就能够通过配置以提供 “先升压后降压” (boost-then-buck) 的能力,其中一个通道被配置为升压预调节器,而另两个通道则被配置为降压模式 LED 驱动器。 当输入电压源具有很宽的变化范围并且会高于和低于 LED 灯串的额定电压时,人们通常采用一种降压-升压或 SEPIC 拓扑。与单纯降压或单纯升压的稳压器相比,这些拓扑具有一些缺点,即:相比于单纯降压的转换器,其效率和带宽较低 (
[电源管理]
先升压后降压 <font color='red'>LED</font> <font color='red'>驱动器</font>利用宽广的输入电压实现宽 PWM 调光范围
IMP803高电压电致发光灯驱动器原理与应用
    摘要: 电致发光(EL)也称场致发光,是当前最常用的显示方法之一,常用作液晶显示板的背景照明。可广泛用于GPS接收机/寻呼机/蜂窝电路、PPA/手持式计算机、安全照明灯LCD模块等各种电子技术中。领事馆文着重介绍了一种IMP803高电压电致发光驱动器的原理、结构与应用。     关键词: 电致发乐 驱动器 IMP803 1 概述 电致发光(EL)灯一般用作液晶显示板的背景照明。因为它耗电极小,所以常用由几个电池串联供电。IMP803型驱动器零片是为满足这种高电压、小电流要求的发光灯而设计的。 由武汉力源电力股份有限公司等推出的IMP803型高电压电致发光灯驱动器,它内含一个由高频振荡器组成
[应用]
派克汉尼汾的气动线性驱动器被Kiener选定用于自动装配线
OSP-P ORIGA系列线性驱动器被选定在模块化的转向器装配线上为汽车行业应用提供安全,可靠和精确的运动顺序 Kiener Maschinenbau GmbH(机诺机电设备责任有限公司)已经选定派克汉尼汾的气动线性驱动器,用于其为大型汽车制造商模块化转向组件所开发和建造的自动化装配线。派克的ORIGA OSP-P系列线性驱动器,框架尺寸范围10mm - 80mm,可应用于在装配线上,可安全,可靠,精确地移动工件托盘,实现循环供货和返回。OSP-P 系列的气缸在整个使用寿命期间都保持润滑,并且具有高达8000公里的寿命,这使得它们非常适合装配线使用,一旦这里因为故障或日常维护需求而导致停机时间,代价将极为高昂。该驱动器的适用环境温
[工业控制]
派克汉尼汾的气动线性<font color='red'>驱动器</font>被Kiener选定用于自动装配线
Boost型功率因数校正器的电磁兼容研究
摘要:介绍了一种采用无源功率因数校正方法降低电源谐波含量的方案。实验结果表明,该方案成本低、性能好,容易达到各项EMC标准,适合于中小功率电源。 关键词:功率因数校正;电磁兼容;谐波抑制 引言 为了减少对交流电网的谐波污染,已经推出了一些限制电流谐波的标准,如IEC100032ClassD标准,要求必须采取措施降低输入电网的电流谐波含量,提高功率因数。 传统的二极管和电容对输入信号进行整流滤波时,只在输入交流电压的峰值部分才有输入电流,导致产生了很大的电流谐波含量,严重干扰了电网,远不能达到标准要求。为了使输入电流谐波满足要求,必须加功率因数校正(PFC)。比较成熟且应用广泛的是两级方案,它们有各自的功率器件和控制电路。PFC级
[电源管理]
利用电荷泵降低白光LED背光驱动器的成本和体积
  在 手机 和其他移动设备中,白光 LED 能为小尺寸彩屏提供完美的背光效果。但大部分手机使用单节 锂电池 供电,而单节锂 电池 很难直接驱动白光LED。通常锂电池的工作电压范围为3~4.2V,而白光LED的导通压降是 3.5~4.2V(20mA)。因此,锂电池电压降低后将无法直接驱动白光LED。   为了给白光LED提供足够的正向压降,可以使用基于电容的电荷泵或基于电感的升压电路。考虑到效率和电池寿命,基于电感的转换器可能是最好的选择,但是额外的电感会增加系统成本。而且,由于EMI和RF干扰,电感型升压电路需要仔细的设计和布板。与之相比,电荷泵解决方案具有价格便宜、易使用等优势,但效率较低,缩短了电池使用寿命。   随
[电源管理]
利用电荷泵降低白光<font color='red'>LED</font><font color='red'>背光</font><font color='red'>驱动器</font>的成本和体积
Diodes全新车规级降压 LED驱动器问市,可简化回馈回路
Diodes 公司 宣布推出 AL8843Q 与 AL8862Q 两款符合汽车规格的直流对直流 (DC-DC) 降压转换器,适用于驱动汽车内外部单一的 LED 或多重 LED 灯条。产品应用包含目前许多制造商已设为标准配备的日行灯 (DRL),亦包含雾灯、方向灯、煞车/停止灯。 AL8843Q 与 AL8862Q 的供应电压皆从 4.5V 到至少 40V (AL8862Q 达 55V),可承受相当严重的电压变动,例如怠速启动或熄火/启动操作时的负载突降,不会产生对应的 LED 驱动器电流衰减问题。 高整合度不仅带来高效能,亦减少物料清单。两款皆内建功率 MOSFET:AL8843Q 为 40V/0.2Ω,AL8862
[汽车电子]
Diodes全新车规级降压 <font color='red'>LED</font><font color='red'>驱动器</font>问市,可简化回馈回路
PAM推出内置MOSFET高压LED驱动器
PAM(Power Analog Microelectronics)推出内置MOSFET高压30瓦的LED驱动器,采用台积电的双极型CMOS-DMOS(BCD)工艺制成。具有从5.5V 到40V很宽的输入电压范围,它是一个非常灵活的LED驱动器,可以工作于升压、降压、升降压(SEPIC)三种工作方式。它可以利用内置的MOSFET来驱动10个3瓦的LED,或者30个1瓦的LED。由于它在很宽的电压范围内的恒流特性和95%以上的效率,使它不论是在输入电压跌落或很高的环境温度时,都能正常工作。因为利用了台积电的40伏BCD工艺,和PAM公司已申请的专利,它还集成了一个功率MOSFET管。其他的功能还包括过流保护、过压保护、欠压锁定和过温
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved