LED信号灯驱动器参考设计
Abstract: This application note presents a reference design for a signal-lamp linear LED driver that consists of six strings of 4 LEDs per string and delivers 350mA per string with a common cathode configuration. Common cathode arrangements require that the current-sense resistors be placed on the high (anode) side, which forces the LED drivers to use a level shifter.
Circuit Description
This application note describes a linear LED driver for six strings of 4 LEDs to be used in a signal lamp. The LED load provides independent access to the anodes of each string, but the cathodes are common connected. The circuit operates from an automotive battery with a minimum voltage of 10V and a maximum of 28V, while delivering 350mA to each string.
Because of the common cathode configuration, the current-sense resistors must be located on the anode side of the LED strings. Since the LED driver's (MAX16836) current-sense inputs are limited to 4V of common-mode voltage, the voltage across the sense resistors must be level shifted and ground referenced to be compatible with the drivers. The PNP transistor pairs translate the voltage across the LED current-sense resistor to a GND-referenced voltage that is fed into the current-sense pin of the MAX16836. The following equations provide the values for R1, R2, R3, and R4 (in the U1 section of the schematic):
Where VSENSE is the current-sense voltage of the IC (200mV).
When the LED string is at its minimum voltage (7.6V) and the input is at its maximum (28V), the LED drivers experience losses of over 7W. Dissipating this heat is almost impossible with circuit board heatsinking methods, so at high voltages a dimming signal with reduced duty cycles (down to 25%) drives the UNIVERSAL DIM input to lessen the power dissipation in the drivers.
This reference design allows for independent enables that allow each string to be controlled separately.
Figure 1 presents a schematic for the circuit, and Table 1 provides the Bill of Materials (BOM). The following are the electrical input requirements and output capabilities.
VIN: 11V to 28V
PWMIN: 10% to 100%
VLED configuration: 7.6VDC (min) to 10VDC (max), 350mA
More detailed image (PDF, 7.96kB)
Figure 1. Schematic of the driver design.
Table 1. Bill of Materials
Designator | Component | Description | Footprint | Quantity |
C1, C2, C3, C4, C5, C6 | Nonpolarized capacitor | 0.1µF, 25V | 0603 | 6 |
C10, C11, C12, C13, C14, C15 | Nonpolarized capacitor | 0.1µF, 50V | 0603 | 6 |
Q1, Q2, Q3, Q4, Q5, Q6 | Dual PNP transistor | DMMT5401 | 6-SOT23 | 6 |
R1, R5, R9, R13, R17, R21 | Resistor | 0.5Ω | 0603 | 6 |
R2, R6, R10, R14, R18, R22 | Resistor | 866Ω | 0603 | 6 |
R3, R7, R11, R15, R19, R23 | Resistor | 1.00kΩ | 0603 | 6 |
R4, R8, R12, R16, R20, R24 | Resistor | 40.2Ω | 0603 | 6 |
U1, U2, U3, U4, U5, U6 | MAX16836ATE | High-brightness LED driver | 5mm x 5mm, 16-TQFN with exposed pad | 6 |
上一篇:LED背光boost驱动器
下一篇:LED显示屏如何分类
推荐阅读最新更新时间:2023-10-18 16:16
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况