LED基础知识大普及

最新更新时间:2013-09-30来源: 21IC关键字:LED  基础知识 手机看文章 扫描二维码
随时随地手机看文章

1 LED发光原理

发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P- N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。

 

 

假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。

2 LED的特性

2.1极限参数的意义

1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。

2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。

3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。

4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。

2.2电参数的意义

 

 

1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。

2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。

3)光谱半宽度Δλ:它表示发光管的光谱纯度,是指图3中1/2峰值光强所对应两波长之间隔。

4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。半值角的2倍为视角(或称半功率角)。

 

 

图3给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。由此图可以得到半值角或视角值。

5)正向工作电流If:它是指发光二极管正常发光时的正向电流值。在实际使用中应根据需要选择IF在0.6·IFm以下。

6)正向工作电压VF:参数表中给出的工作电压是在给定的正向电流下得到的。一般是在IF=20mA时测得的。发光二极管正向工作电压VF在1.4~3V.在外界温度升高时,VF将下降。

7)V-I特性:发光二极管的电压与电流的关系可用图4表示。在正向电压正小于某一值(叫阈值)时,电流极小,不发光。当电压超过某一值后,正向电流随电压迅速增加,发光。由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。正向的发光管反向漏电流IR<10μA以下。

 

 

3 LED的分类

3.1按发光管发光颜色分

按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片。根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管和达于做指示灯用。

3.2按发光管出光面特征分

按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。由半值角大小可以估计圆形发光强度角分布情况。从发光强度角分布图来分有三类:

(1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为5°~20°或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统。

(2)标准型。通常作指示灯用,其半值角为20°~45°。

(3)散射型。这是视角较大的指示灯,半值角为45°~90°或更大,散射剂的量较大。3.3按发光二极管的结构分

按发光二极管的结构分有全环氧包封、金属底座环氧封装、陶瓷底座环氧封装及玻璃封装等结构。

3.4按发光强度和工作电流分

按发光强度和工作电流分有普通亮度的LED(发光强度<10mcd);超高亮度的LED(发光强度>100mcd);把发光强度在 10~100mcd间的叫高亮度发光二极管。一般LED的工作电流在十几mA至几十mA,而低电流LED的工作电流在2mA以下(亮度与普通发光管相同)。

除上述分类方法外,还有按芯片材料分类及按功能分类的方法。

4 LED的应用

由于发光二极管的颜色、尺寸、形状、发光强度及透明情况等不同,所以使用发光二极管时应根据实际需要进行恰当选择。由于发光二极管具有最大正向电流 IFm、最大反向电压VRm的限制,使用时,应保证不超过此值。为安全起见,实际电流IF应在0.6IFm以下;应让可能出现的反向电压VR<0. 6VRm.LED被广泛用于种电子仪器和电子设备中,可作为电源指示灯、电平指示或微光源之用。红外发光管常被用于电视机、录像机等的遥控器中。

 

 

(1)利用高亮度或超高亮度发光二极管制作微型手电的电路如图5所示。图中电阻R限流电阻,其值应保证电源电压最高时应使LED的电流小于最大允许电流IFm.

(2)图6(a)、(b)、(c)分别为直流电源、整流电源及交流电源指示电路。

 

 

图(a)中的电阻≈(E-VF)/IF;

图(b)中的R≈(1.4Vi-VF)/IF;

图(c)中的R≈Vi/IF式中,Vi--交流电压有效值。

(3)单LED电平指示电路。在放大器、振荡器或脉冲数字电路的输出端,可用LED表示输出信号是否正常,如图7所示。R为限流电阻。只有当输出电压大于LED的阈值电压时,LED才可能发光。

 

 

(4)单LED可充作低压稳压管用。由于LED正向导通后,电流随电压变化非常快,具有普通稳压管稳压特性。发光二极管的稳电压在1.4~3V间,应根据需要进行选择VF.

(5)电平表。目前,在音响设备中大量使用LED电平表。它是利用多只发光管指示输出信号电平的,即发光的LED数目不同,则表示输出电平的变化。当输入信号电平很低时,全不发光。输入信号电平增大时,首先LED1亮,再增大LED2亮。

5 发光二极管的检测

5.1普通发光二极管的检测

(1)用万用表检测。利用具有×10kΩ挡的指针式万用表可以大致判断发光二极管的好坏。正常时,二极管正向电阻阻值为几十至200kΩ,反向电阻的值为∝。如果正向电阻值为0或为∞,反向电阻值很小或为0,则易损坏。这种检测方法,不能实地看到发光管的发光情况,因为×10kΩ挡不能向LED提供较大正向电流。

如果有两块指针万用表(最好同型号)可以较好地检查发光二极管的发光情况。用一根导线将其中一块万用表的“+”接线柱与另一块表的“-”接线柱连接。余下的“-”笔接被测发光管的正极(P区),余下的“+”笔接被测发光管的负极(N区)。两块万用表均置×10Ω挡。正常情况下,接通后就能正常发光。若亮度很低,甚至不发光,可将两块万用表均拨至×1Ω若,若仍很暗,甚至不发光,则说明该发光二极管性能不良或损坏。应注意,不能一开始测量就将两块万用表置于×1Ω,以免电流过大,损坏发光二极管。

(2)外接电源测量。用3V稳压源或两节串联的干电池及万用表(指针式或数字式皆可)可以较准确测量发光二极管的光、电特性。为此可按图10所示连接电路即可。如果测得VF在1.4~3V之间,且发光亮度正常,可以说明发光正常。如果测得VF=0或VF≈3V,且不发光,说明发光管已坏

5.2红外发光二极管的检测

由于红外发光二极管,它发射1~3μm的红外光,人眼看不到。通常单只红外发光二极管发射功率只有数mW,不同型号的红外LED发光强度角分布也不相同。红外LED的正向压降一般为1.3~2.5V.正是由于其发射的红外光人眼看不见,所以利用上述可见光LED的检测法只能判定其PN结正、反向电学特性是否正常,而无法判定其发光情况正常否。为此,最好准备一只光敏器件(如2CR、2DR型硅光电池)作接收器。用万用表测光电池两端电压的变化情况。来判断红外LED加上适当正向电流后是否发射红外光。其测量电路如图8所示。

1.jpg

 

 

6 LED封装技术及结构

6.1 LED封装的特殊性

LED封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而LED封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功能,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于LED.

LED的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高LED的内、外部量子效率。常规Φ5mm型LED封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。顶部包封的环氧树脂做成一定形状,有这样几种作用:保护管芯等不受外界侵蚀;采用不同的形状和材料性质(掺或不掺散色剂),起透镜或漫射透镜功能,控制光的发散角;管芯折射率与空气折射率相关太大,致使管芯内部的全反射临界角很小,其有源层产生的光只有小部分被取出,大部分易在管芯内部经多次反射而被吸收,易发生全反射导致过多光损失,选用相应折射率的环氧树脂作过渡,提高管芯的光出射效率。用作构成管壳的环氧树脂须具有耐湿性,绝缘性,机械强度,对管芯发出光的折射率和透射率高。选择不同折射率的封装材料,封装几何形状对光子逸出效率的影响是不同的,发光强度的角分布也与管芯结构、光输出方式、封装透镜所用材质和形状有关。若采用尖形树脂透镜,可使光集中到LED的轴线方向,相应的视角较小;如果顶部的树脂透镜为圆形或平面型,其相应视角将增大。

一般情况下,LED的发光波长随温度变化为0.2-0.3nm/℃,光谱宽度随之增加,影响颜色鲜艳度。另外,当正向电流流经pn结,发热性损耗使结区产生温升,在室温附近,温度每升高1℃,LED的发光强度会相应地减少1%左右,封装散热;时保持色纯度与发光强度非常重要,以往多采用减少其驱动电流的办法,降低结温,多数LED的驱动电流限制在20mA左右。但是,LED的光输出会随电流的增大而增加,目前,很多功率型LED的驱动电流可以达到70mA、100mA甚至1A级,需要改进封装结构,全新的LED封装设计理念和低热阻封装结构及技术,改善热特性。例如,采用大面积芯片倒装结构,选用导热性能好的银胶,增大金属支架的表面积,焊料凸点的硅载体直接装在热沉上等方法。此外,在应用设计中,PCB线路板等的热设计、导热性能也十分重要。

6.2 封装结构类型

自上世纪九十年代以来,LED芯片及材料制作技术的研发取得多项突破,透明衬底梯形结构、纹理表面结构、芯片倒装结构,商品化的超高亮度(1cd以上)红、橙、黄、绿、蓝的LED产品相继问市,如表1所示,2000年开始在低、中光通量的特殊照明中获得应用。LED的上、中游产业受到前所未有的重视,进一步推动下游的封装技术及产业发展,采用不同封装结构形式与尺寸,不同发光颜色的管芯及其双色、或三色组合方式,可生产出多种系列,品种、规格的产品。

LED产品封装结构的类型如表2所示,也有根据发光颜色、芯片材料、发光亮度、尺寸大小等情况特征来分类的。单个管芯一般构成点光源,多个管芯组装一般可构成面光源和线光源,作信息、状态指示及显示用,发光显示器也是用多个管芯,通过管芯的适当连接(包括串联和并联)与合适的光学结构组合而成的,构成发光显示器的发光段和发光点。表面贴装LED可逐渐替代引脚式LED,应用设计更灵活,已在LED显示市场中占有一定的份额,有加速发展趋势。固体照明光源有部分产品上市,成为今后LED的中、长期发展方向。

6.3 引脚式封装

LED脚式封装采用引线架作各种封装外型的引脚,是最先研发成功投放市场的封装结构,品种数量繁多,技术成熟度较高,封装内结构与反射层仍在不断改进。标准LED被大多数客户认为是目前显示行业中最方便、最经济的解决方案,典型的传统LED安置在能承受0.1W输入功率的包封内,其90%的热量是由负极的引脚架散发至PCB板,再散发到空气中,如何降低工作时pn结的温升是封装与应用必须考虑的。包封材料多采用高温固化环氧树脂,其光性能优良,工艺适应性好,产品可*性高,可做成有色透明或无色透明和有色散射或无色散射的透镜封装,不同的透镜形状构成多种外形及尺寸,例如,圆形按直径分为Φ2mm、Φ3mm、Φ4.4mm、Φ5mm、Φ7mm等数种,环氧树脂的不同组份可产生不同的发光效果。花色点光源有多种不同的封装结构:陶瓷底座环氧树脂封装具有较好的工作温度性能,引脚可弯曲成所需形状,体积小;金属底座塑料反射罩式封装是一种节能指示灯,适作电源指示用;闪烁式将CMOS振荡电路芯片与LED管芯组合封装,可自行产生较强视觉冲击的闪烁光;双色型由两种不同发光颜色的管芯组成,封装在同一环氧树脂透镜中,除双色外还可获得第三种的混合色,在大屏幕显示系统中的应用极为广泛,并可封装组成双色显示器件;电压型将恒流源芯片与LED管芯组合封装,可直接替代5-24V的各种电压指示灯。面光源是多个LED管芯粘嵩谖⑿蚉CB板的规定位置上,采用塑料反射框罩并灌封环氧树脂而形成,PCB板的不同设计确定外引线排列和连接方式,有双列直插与单列直插等结构形式。点、面光源现已开发出数百种封装外形及尺寸,供市场及客户适用。

6.4 表面贴装封装

在2002年,表面贴装封装的LED(SMD LED)逐渐被市场所接受,并获得一定的市场份额,从引脚式封装转向SMD符合整个电子行业发展大趋势,很多生产厂商推出此类产品。

早期的SMD LED大多采用带透明塑料体的SOT-23改进型,外形尺寸3.04×1.11mm,卷盘式容器编带包装。在SOT-23基础上,研发出带透镜的高亮度SMD的SLM-125系列,SLM-245系列LED,前者为单色发光,后者为双色或三色发光。近些年,SMD LED成为一个发展热点,很好地解决了亮度、视角、平整度、可*性、一致性等问题,采用更轻的PCB板和反射层材料,在显示反射层需要填充的环氧树脂更少,并去除较重的碳钢材料引脚,通过缩小尺寸,降低重量,可轻易地将产品重量减轻一半,最终使应用更趋完美,尤其适合户内,半户外全彩显示屏应用。

6.5 功率型封装

LED芯片及封装向大功率方向发展,在大电流下产生比Φ5mmLED大10-20倍的光通量,必须采用有效的散热与不劣化的封装材料解决光衰问题,因此,管壳及封装也是其关键技术,能承受数W功率的LED封装已出现。5W系列白、绿、蓝绿、蓝的功率型LED从2003年初开始供货,白光LED光输出达1871m,光效44.31m/W绿光衰问题,开发出可承受10W功率的LED,大面积管;匕尺寸为2.5×2.5mm,可在5A电流下工作,光输出达2001m,作为固体照明光源有很大发展空间。

Luxeon系列功率LED是将A1GalnN功率型倒装管芯倒装焊接在具有焊料凸点的硅载体上,然后把完成倒装焊接的硅载体装入热沉与管壳中,键合引线进行封装。这种封装对于取光效率,散热性能,加大工作电流密度的设计都是最佳的。其主要特点:热阻低,一般仅为14℃/W,只有常规LED的1/10;可*性高,封装内部填充稳定的柔性胶凝体,在-40-120℃范围,不会因温度骤变产生的内应力,使金丝与引线框架断开,并防止环氧树脂透镜变黄,引线框架也不会因氧化而玷污;反射杯和透镜的最佳设计使辐射图样可控和光学效率最高。另外,其输出光功率,外量子效率等性能优异,将LED固体光源发展到一个新水平。

随着LED广泛用于大面积图文显示全彩屏,状态指示、标志照明、信号显示、液晶显示器的背光源,汽车组合尾灯及车内照明等等方面,其发展前景吸引全球照明大厂家都先后加入LED光源及市场开发中。极具发展与应用前景的是白光LED,用作固体照明器件的经济性显着,且有利环保,正逐步取代传统的白炽灯,世界年增长率在20%以上,美、日、欧及中国台湾省均推出了半导体照明计划。功率型LED优异的散热特性与光学特性更能适应普通照明领域,被学术界和产业界认为是LED进入照明市场的必由之路。因此,LED被誉为21世纪新光源,有望成为继白炽灯、荧光灯、高强度气体放电灯之后的第四代光源。

关键字:LED  基础知识 编辑:探路者 引用地址:LED基础知识大普及

上一篇:解析LED封装支架市场的现状与未来
下一篇:LED灯高功率因数驱动器的设计方案(一)

推荐阅读最新更新时间:2023-10-12 22:27

8X8 LED点阵显示原理与编程技术
1. 实验任务 在8X8 LED点阵上显示柱形,让其先从左到右平滑移动三次,其次从右到左平滑移动三次,再次从上到下平滑移动三次,最后从下到上平滑移动三次,如此循环下去。 2. 电路原理图 3. 硬件电路连线 (1). 把“ 单片机 系统”区域中的P1端口用8芯排芯连接到“点阵模块”区域中的“DR1-DR8”端口上; (2). 把“ 单片机 系统”区域中的P3端口用8芯排芯连接到“点阵模块”区域中的“DC1-DC8”端口上; 4. 程序设计内容 (1). 8X8 点阵LED工作原理说明 8X8点阵LED结构如下图所示 从上图中可以看出,8X8点阵共需要64个 发光二极管 组成,且每个发光 二极管 是放置在行线和列线的交叉点
[单片机]
8X8 <font color='red'>LED</font>点阵显示原理与编程技术
LED屏简介,LED屏是专门广告媒体系统设计
LED屏简介,LED屏是什么? LED屏是专门广告媒体系统设计。有双色LED和真彩色,可满足文字、图片信息制作的业务宣传、通知等,可外接电脑和电视、VCD、DVD等视频信号;能够对网络资源和相关资讯进行实时的演示、监控和智能化管理,使得展示、演示工作更直观、更高效,同时体现了现代化广告媒体的形象。 LED屏应用 LED屏广泛应用于政府、电信、车站、码头、机场、高速公路、电力、证券、金融、体育场馆等。 LED屏视频信号源 视频信号源指录像机、LD影碟机、VCD机、电视机、摄像机等视频设备或这些设备的组合。视频信号源向计算机提供LED屏幕显示的视频信号,LED屏在视频显示状态显示的内容同这些信号源的电视图像完全
[电源管理]
南昌金沙江LED产业园初步形成集群效应
     7月22日下午,南昌市副市长曾光辉在市政府贵宾厅会见了金沙江创投基金董事总经理伍伸俊一行。双方就金沙江led产业园发展相关事宜进行了深入探讨。     曾光辉在会见时说,LED产业是光电子器件发展中的重点,市场潜力巨大。南昌市将进一步加大力度支持LED产业在昌发展,帮助企业解决面临的问题和困难,不断做强做大。伍伸俊表示,金沙江十分看好南昌市场,希望产业园区的建设能为南昌经济又好又快发展贡献力量。     据悉,金沙江LED产业园各方面建设日趋完善,已初步形成产业集群效应,并以晶能光电为龙头,在国际国内LED业界的影响也日益加深。目前,该产业园内项目有晶和照明LED路灯和晶能光电硅衬底LED芯片及器件。  
[电源管理]
传统it供应商将成为led照明推动者
  从市场反映动态观察,未来相关补贴向消费者转移成为政府助推LED产业发展的趋势。目前,LED照明市场并未启动,主要体现在三方面,第一,渗透率不高;第二,单位流明成本未下降到市场普遍接受程度;三,光通量有待进一步提高。但是,随着技术的提升以及终端消费市场的打开,企业若不能提前布局,显然将失去市场先机。   由扬州市政府首先推出的MOCVD补贴政策,对于中国其他地方政府造成跟进效应,促使全中国掀起一波投资LED的热潮。去年年末,扬州招商局表示财政补贴政策不可能一直无限期地持续下去,扬州市的财政补贴政策将于2011年7月告一段落。   实际上,目前传统照明企业无论是国际巨头还是国内巨头,LED照明在整个营销产品中的份额相当少,
[电源管理]
LED球泡灯驱动分析
   前言   随着 LED 的发展以及节能减排的国际大势, LED灯具 及光源向民用市场大规模进军。而作为民用光源里面最为普遍的白炽灯,欧洲已经在2012年禁止白炽灯生产和销售,美洲在2014年也禁止了40W及其以上白炽灯的生产和销售,中国已于2012年10月禁止了100W以上白炽灯的生产和销售,同时将会在2014年10月1日禁止60W及以上白炽灯的生产和销售,将于2016年10月1日禁止15W及以上白炽灯的生产和销售。   在这大势下,作为白炽灯的直接替代光源,LED球泡灯的用量将得到巨大的提升。其品质也会参差不齐。作为LED球泡灯内部不可或缺的驱动电源,其品质很大程度上决定了一个球泡灯的安全与否及品质好坏。   驱动电源基
[电源管理]
<font color='red'>LED</font>球泡灯驱动分析
LED照明灯具设计的三层“境界”
从事设计这一行已经有10个年头了,从最初的模仿国外设计到现在原创设计,也体现了中国 照明 灯具的发展,最初的做生意的老板或许通过卖公模产品就能赚一笔,仿个国外的 LED 灯具就能发财,到现在市场越趋透明化的时代,真正意义上的创新跟设计才是王道。   LED灯具设计第一层境界—微整形,在现有产品基础上进行造型的优化,对某款热销产品或者国外产品进行造型修改,但不能脱离借鉴物,造型风格上必须保持,这里加条装饰线,这里切去一刀,避开专利,以更低的价格跟借鉴物去竞争,国外所谓的造型设计师,大多停留在这个阶段。   LED灯具设计第二层境界—画皮,借鉴现有产品的结构思路,给予全新的造型元素,这层境界的设计往往带有强烈的外观色彩,有一定识别性跟
[电源管理]
巧用废旧塑料电筒做高亮LED电筒
高亮度LED发光二极管,发光效率高、能耗小,工作电流从20mA到数百毫安,用两节5号电池,可使用半年以上,大大节省了电池的使用量,而且使用亮度并不比小电珠差。具体改制方法如下。 用家中原有的装5号电池的塑料旧电筒为基本,下图示出旧电筒结构示意图。需要改动的地方主要有}3处:一是螺纹后盖弹簧处。将螺纹后盖小心的打开并拆下弹簧和与拨动开关的弹簧片,在弹簧与后盖间加一电路印刷板,即电路板(圆形),再剪一绝缘圆板垫在电路板与弹簧间,上面钻若干导线孔和固定弹簧的卡子;二是塑料银碗。在银碗上均匀分布十个小孔,每个小孔直径为5mm,将10个高亮度LED发光二极管挤压到小孔中;三是导电螺纹栓的改造。将小电珠旋下来,内仓加一黄铜弹簧片,
[电源管理]
巧用废旧塑料电筒做高亮<font color='red'>LED</font>电筒
大功率LED恒流驱动电路的设计实例
虽然大功率LED现在还不能大规模取代传统的白炽灯,但它们在室内外装饰、特种照明方面有着越来越广泛的应用,因此掌握大功率LED恒流驱动器的设计技术,对于开拓大功率LED的新应用至关重要。LED按照功率和发光亮度可以划分为大功率LED、高亮度LED及普通LED。一般来说,大功率LED的功率至少在1W以上,目前比较常见的有1W、3W、5W、8W和10W。已大批量应用的有1W和3W LED,而5W、8W和10W LED的应用相对较少。预计大功率LED灯会在2008年奥运会上大量应用,因此电子和照明行业都非关注LED照明新技术的发展应用。 恒流驱动和提高LED的光学效率是LED 应用设计的两个关键问题,本文首先介绍
[半导体设计/制造]
大功率<font color='red'>LED</font>恒流驱动电路的设计实例
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved