LED球泡灯驱动分析

最新更新时间:2014-11-22来源: 互联网关键字:LED球泡灯  驱动分析 手机看文章 扫描二维码
随时随地手机看文章

  前言

  随着LED的发展以及节能减排的国际大势,LED灯具及光源向民用市场大规模进军。而作为民用光源里面最为普遍的白炽灯,欧洲已经在2012年禁止白炽灯生产和销售,美洲在2014年也禁止了40W及其以上白炽灯的生产和销售,中国已于2012年10月禁止了100W以上白炽灯的生产和销售,同时将会在2014年10月1日禁止60W及以上白炽灯的生产和销售,将于2016年10月1日禁止15W及以上白炽灯的生产和销售。

  在这大势下,作为白炽灯的直接替代光源,LED球泡灯的用量将得到巨大的提升。其品质也会参差不齐。作为LED球泡灯内部不可或缺的驱动电源,其品质很大程度上决定了一个球泡灯的安全与否及品质好坏。

  驱动电源基本分为非隔离驱动及隔离驱动两大类:

  一、非隔离驱动

  非隔离驱动(non­-isolated power)是指在输入端和负载端之间没有通过变压器进行电气隔离,而又直接连接,输入端和负载端共地,因此触摸负载就有触电的危险。目前用得最多的是非隔离直接降压型驱动。也就是把交流电整流以后得到直流高压,然后就直接用降压(Buck)电路进行降压和恒流控制,非隔离驱动的优点是成本低、简单、体积小、效率高。

  当非隔离驱动应用于球泡灯时,使用铝材(金属)外壳无法做到安全性的标准(输入对外壳要求耐压4KV),故而外壳必须采用绝缘材料加工,通常有塑料、导热塑料、塑包铝等形式来实现。然而采用导热塑料或者塑包铝的形式又使得LED球泡灯的成本增加,采用塑料加工成的外壳又无法有效的散热。在这样一个LED竞争激烈的大环境下,很大一部分商家为了追求利润及销售额,无视安全因素制造大量非隔离金属外壳的球泡灯,又或无视产品品质制造大量塑壳球泡灯,同时灯具的功率往往虚标30%以上。

  目前球泡灯上应用最多的几种非隔离驱动如下:

  1.电阻限流式

  图1.1

  如图1.1:电阻限流式驱动,仅采用一个桥堆,将50Hz的正弦波交流电变化为100Hz的半正弦波脉动直流电,通过限流电阻来限定LED的平均电流。该驱动方式在电压未达到LED模块(由多个LED串联构成)开启电压前,LED不发光;电压超过LED模块的开启电压后,通过LED的电流逐渐增加,表现形式为I=(U-Uon)/R,经过LED的电流会随着电压的变化而变化。

  如图1.2所示(绿线表示桥堆输出端电压,红线表示LED电流,蓝线表示电阻R上的电压),LED电流有间断(频率为100Hz),LED电流存在的时候也有大小变化,故而表现为频率为100Hz的频闪现象。

  如图1.2所示,LED模组串联个数较多(即开启电压需求较高)、限流电阻较小时,LED电流断续时间长,频闪效果明显,但是电阻上消耗的能量较小(红线电流与蓝线电压的积分),即效率相对较高。

  如图1.3所示,LED模组串联个数较少(即开启电压需求较低)、限流电阻较大时,LED电流断续时间短,频闪效果较不明显,但是电阻上消耗的能量较大,效率相对很低。

  电阻限流式非隔离驱动,在电网电压不稳定时,球泡灯的功率变化为ΔP=ΔU2/R,因此功率极其不稳定,造成照明亮度变化明显,而且功率随着电压波动的平方变化,使得灯具非常容易长时间在超过标准温度下工作,寿命减短。

  该驱动方案由于负载主要呈现为阻态,电压过零的时候不存在电流,故而功率因数较高接近1,不过由于限流电阻的存在其效率很差通常只有30%~65%的效率,但是由于该方案成本非常低廉,导致很多生产商生产该类产品,LED球泡灯的品质很难得到保证,其安全性也难以得到保证。

  图1.2    

                                                        

    图1.3

  2.恒流二极管限流

  图2.1

  如图2.1:恒流二极管驱动,采用一个桥堆,将50Hz的正弦波交流电变化为100Hz的半正弦波脉动直流电,通过恒流二极管来限定LED的电流。该驱动方式在电压未达到LED模块(由多个LED串联构成)开启电压前,LED不发光;电压超过LED模块的开启电压后,通过LED的电流由恒流二极管限定,表现为恒定电流状态。桥堆后面的电容是平衡效率及功率因数用的。

  不加桥堆后的电解电容,如图2.2所示(绿线表示桥堆输出端电压,红线表示LED电流,蓝线表示恒流二极管CCD上的电压),LED电流有间断(频率为100Hz),但是LED电流存在的时候表现为恒流状态,故而表现为频率为100Hz的现象,同样,由于恒流二极管限定了通过的电流,其两端必定会承载超出LED工作电压的那部分电压,因此效率较低,通常在70%左右,但是其电流基本跟随电压波形,功率因数较高,可较容易做到0.9以上。

  加上桥堆后的电解电容,如图2.3所示,LED电流连续且恒定,因此在电容量足够大的前提下该驱动方案就表现为无频闪,而且,由于电解电容将桥堆后的电压波动降低了,因此LED模组的电压的设定可以充分的接近桥堆后输出电压,使得恒流二极管不用承载过多的电压,提高驱动效率,通常可提升至85%左右,但是其电流恒定,在输入电压过零的时候导致大量的无功功率产生,功率因数较低,一般只有0.5~0.6。

  恒流二极管实现的非隔离驱动,在电网电压不稳定时,球泡灯的功率变化为ΔP=ΔU*I,因此功率浮动与电压波动成正比,但是灯具照明效果相对稳定,但是由于恒流二极管的价格始终较高,而且其电流驱动能力只有几十毫安,故而无法得到推广应用。

  图2.2  

                                                       

    图2.3

  3.阻容降压

  图3.1

  如图3.1:阻容降压工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,因为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,在其后面串联一个LED模组,只要电流设定正确,那么LED两端的电压也必定是额定状态下的电压。

  因此该方案由于电容主要消耗无功功率,效率较高,但是其功率因数往往非常低,通常在0.4左右。而且C2的容值大小直接决定了频闪的显著与否。

  因为LED工作需要比较稳定的直流环境,因此该方案常常采用桥式全波整流,但是全波整流产生浮置的地,并在零线和火线之间产生高压,造成人体触电伤害,是为比较危险的一种驱动。

  电网电压波动时,LED电流也会同比的跟随变化,因此,其稳定性也较差,而且由于电容寿命直接影响容值,使得容值变小,输出电流也会随之降低,使得LED球泡灯的光衰倍化加剧。

  但是,由于其成本低廉,线路非常简单,而且对LED模块的工作电压的范围几乎没有要求,通用性非常高,使得目前大部分厂家采用阻容降压的方式作为中低功率的球泡灯驱动。

  4.线性驱动

  图4.1

  图4.2

  如图4.1及4.2:线性驱动,采用一个桥堆,将50Hz的正弦波交流电变化为100Hz的半正弦波脉动直流电,然后通过线性恒流芯片根据当前状态下的半正弦波电压值来分段驱动LED模块,并且限定每一段LED的电流。简单的说就是电压达到第一段LED模块工作电压时,第一段LED工作,电流限定在红线的第一个台阶处;电压达到第一段LED模块工作电压与第二段工作电压之和时,第一段LED和第二段LED同时工作,电流限定在红线的第二个台阶处;电压达到三段LED模块工作电压总和时,三段LED同时工作,电流限定在红线的第三个台阶处;该驱动方式在电压未达到第一段LED模块工作电压前,LED不发光,没有损耗;电压超过第一段LED模块的工作电压后,通过LED的电流由线性驱动芯片限定,表现为恒定电流状态,在达到后段LED工作电压前,超出的电压将由芯片内部的MOS吸收,该部分能量为损耗能量。通过合理的LED串联分段,尽可能使得三段的工作电压拟合正弦波,充分减小损耗,驱动的效率可提升至90%以上

  由于其驱动特性是将LED模块按照阻性负载的特性的模式驱动,因此电流跟随电压波形,功率因数可达0.97以上,但LED电流有间断(频率为100Hz),故而表现为频率为100Hz的现象,同时,在周期内,LED亮度是分为6个亮度等级渐变的,可适当缓解频闪的效果。

  同样的,在桥堆后面加上电解电容,能通过降低功率因数来实现无频闪,在Cin足够大,将电压的波谷值拉升至所有LED工作电压之上,频闪现象就将完全消失,但是功率因数也会将至0.5左右。如图4.3

  图4.3

  在电网电压不稳定时,线性驱动芯片会根据电压的变化对电流稍作调整,使得整灯的功率维持不变,灯具的寿命充分得到保证,而且灯具亮度变化也不会超过10%,肉眼几乎无法辨别。由于其成本相对阻容方案要高,而且设计电路要求较高,通用性小,故而在市面上的球泡灯应用中较为少见。

  5.恒流芯片buck(NPFC)

  图5.1

  如图5.1:降压型恒流驱动,采用一个桥堆,将50Hz的正弦波交流电变化为100Hz的半正弦波脉动直流电,通过桥堆后的电解电容将脉动电压变换为振幅较小的直流电压。通过采样电阻来高频驱动恒流芯片内部的MOS,达到控制电流的目的,电流值不受输入电压波动而影响,恒流芯片的内部MOS的开关频率通常在几十至几百赫兹。

  当桥堆后的电解电容足够大时,只需保证输出端LED模块的工作电压小于电解电容输出端波谷的电压值时,可以完全消除100Hz的频闪;而芯片内部的高频开关由于其频率较高,外加LED模块并联的滤波电容及电感,使得频闪效应得到解决。当然,如果桥堆后面的电容较小时,LED的工作电压大于电容后端输出电压,则100Hz频闪依旧存在,其振幅与LED模块的工作电压和电容后端输出电压的波谷的差值有关,差值越大,振幅越大,频闪效果越明显。

  由于大电容及后端开频的存在,该电路功率因数往往只有0.5左右,但是因为其结构简单,效率高达90%以上,恒流精度更是在5%甚至3%以内,负载调整率也较高,因此大部分追求品质的LED球泡灯生产商选用改方案。

  也有不少商家为了节约恒流芯片的成本,在恒流芯片处通过采用被动元器件(二极管,三极管,MOS)来控制恒流,通常这样的方案在恒流精度以及开路保护,短路保护方面做得就不够好。

  6.恒流芯片buck(填谷)

  图6.1

  如图6.1:由于降压型恒流驱动广受好评,但是收到超过5W的照明灯具及光源的功率因数要求>0.7这个规范的约束,技术人员在降压型恒流驱动的整流桥和整流电容之间设计了由3个二极管2个电容组成的3D2C式填谷电路,通过2个电容串联方式充电及并联方式放电的形式,提升功率因数,功率因数可提升至0.8~0.9,使得降压型恒流驱动也满足LED球泡灯在功率因数方面的要求。当然成本会有一定程度的提升,电源体积也会相应变大。

  7.恒流芯片buck(APFC)

  图7.1

  如图7.1:APFC恒流驱动,通过芯片上检测输入电压波形的引脚(此处是LN)控制输出电流的波形,使其接近半正弦波,即当输入电压过零点时,MOS关断,使输入电流也变零,从而使得电流的包络波形接近半正弦波,从而提升功率因数,功率因数通常可达0.95及以上;在输入电压不处于过零状态下,恒流芯片根据FB引脚出的反馈电压进行高频开关动作,控制输出电流,达到恒流的目的。

  由于其输入电流呈现半正弦波,导致其输出电流也有100Hz的波动,当然其振幅由于输出端滤波电容及电感的存在,会小很多,但是存在100Hz的频闪是不争的实事;当然适当的加大滤波电容会使得输出电流纹波变小,改善频闪效果。

  二、隔离驱动

  隔离驱动(isolated power)是指在输入端和负载端之间通过隔离变压器进行电气隔离,使输出端无法直接接触高压。因此触摸负载就没有触电的危险,隔离驱动的优点是安全。

  当隔离驱动应用于球泡灯时,其外壳可通过金属、塑料、导热塑料、塑包铝等多种形式来实现。我们所要克服的就是隔离驱动所带来的体积大,效率较低,成本较高等缺点。

  因此在整个LED球泡灯市场上,隔离电源使用的较少。

  也有不少生产商对隔离驱动理解的不够透彻,以为使用了隔离变压器将输入与输出分隔开就可以了,而忽略了爬电距离及电气间隙等,这样的方案完全不能算作隔离驱动。

  1.单级恒流(NPFC)

  图8.1

  LED球泡灯上应用的隔离单级恒流驱动,简单的说,与非隔离降压型恒流驱动主要差异体现在能量依靠隔离变压器,在原边将电能转换为磁,又在副边将磁再次转化为电能,在提升安全性的同时,转化效率降低了。其效率通常只有80%~85%。

  该驱动方式的功率因数由于没有进行校正,大约为0.5,当然也可以在桥堆后面设计3D2C的填谷电路,将功率因数提升至0.8~0.9。

  2.单级恒流(APFC)

  图9.1

  LED球泡灯上应用的隔离APFC单级恒流驱动,与非隔离APFC恒流驱动主要差异也是体现在能量依靠隔离变压器,在原边将电能转换为磁,又在副边将磁再次转化为电能,在提升安全性的同时,转化效率降低了,其效率通常只有80%~85%。同样不可避免的产生100Hz的频闪,其频闪深度可通过输出端的滤波电容控制。

  3.二级恒流(PFC)

  图10.1

  二级恒流隔离驱动,在变压器原边通过APFC芯片U1将驱动的功率因数提高,然后通过变压器将电能传递到副边,副边的恒流芯片U2将输出电流变化为恒流电流,其芯片工作频率大多处于几十K到几百K赫兹的范围。

  该方式驱动,功率因数一般都在0.95以上,而且无100Hz的频闪。但是由于其线路复杂,成本较高,效率通常也只有80%~85%。

  几乎没有球泡灯驱动应用到这种驱动方式。

关键字:LED球泡灯  驱动分析 编辑:探路者 引用地址:LED球泡灯驱动分析

上一篇:Molex SlimRay发布预接线式LED芯片基板阵列光源灯座
下一篇:倒装芯片衬底粘接材料对大功率LED热特性的影响

推荐阅读最新更新时间:2023-10-12 22:49

3W LED球泡灯趋势研究:非隔离逆袭隔离
随着绝缘散热材料的优化普及,非隔离驱动方案是大势所趋。更高的效率的实际意义除了降低能耗,更提高了 LED 灯珠使用率,降低成本,给消费者带来动力。目前中国LED标准尚未确立,因为市场激烈竞争,目前市场3W隔离驱动方案可以达到极低成本,但存在一些问题。    市场目前主流3W驱动电源简介   3WLED球泡灯是目前消费需求量最大的市场之一,目前主流的方案是3×1W,每个灯珠3.3V300mA,通过3个灯珠串联方式形成负载,输出负载为10V/300mA.由于电网电压整流后和此输出负载电压相差较大,所以最适合的方式是通过反激隔离降压驱动。然而隔离电路结构复杂,器件较多,成本较高,效率较低,可靠性较低,不适合批量生产。与隔离电
[电源管理]
3W <font color='red'>LED球泡灯</font>趋势研究:非隔离逆袭隔离
三相逆变器中IGBT的几种驱动电路的分析
1前言   电力电子变换技术的发展,使得各种各样的电力电子器件得到了迅速的发展。20世纪80年代,为了给高电压应用环境提供一种高输入阻抗的器件,有人提出了绝缘门极双极型晶体管(IGBT)[1]。在IGBT中,用一个MOS门极区来控制宽基区的高电压双极型晶体管的电流传输,这就产生了一种具有功率MOSFET的高输入阻抗与双极型器件优越通态特性相结合的非常诱人的器件,它具有控制功率小、开关速度快和电流处理能力大、饱和压降低等性能。在中小功率、低噪音和高性能的电源、逆变器、不间断电源(UPS)和交流电机调速系统的设计中,它是目前最为常见的一种器件。   功率器件的不断发展,使得其驱动电路也在不断地发展,相继出现了许多专用的驱动集成
[电源管理]
三相逆变器中IGBT的几种<font color='red'>驱动</font>电路的<font color='red'>分析</font>
脉冲信号电缆驱动电路传输性能分析
石油测井中的脉冲信号要经过铠装电缆传输到地面测井仪进行处理,其有效性取决于下井仪脉冲驱动电路、测井电缆传输性能、地面测井仪脉冲信号检测能力。本文设计制作了模拟最差测井电缆的模拟电缆,分析了影响脉冲信号电缆驱动电路传输性能的因素,进行了驱动电路的改进设计,探讨了驱动电路的驱动能力与电缆长度的关系,并对设计结果进行了实验室和实际测井验证。 关键词:脉冲信号,铠装电缆,驱动电路,传输性能,分析 1 问题的提出 石油测井中的脉冲信号要经过几千米的多芯或单芯铠装电缆才能传输到地面测井仪进行处理,这一过程如图1所示。 由图1可以看出,这一过程实现的有效性,主要取决于以下三个方面:
[模拟电子]
脉冲信号电缆<font color='red'>驱动</font>电路传输性能<font color='red'>分析</font>
ARM-Linux驱动--Watch Dog Timer(看门狗)驱动分析
硬件平台:FL2440 内核版本:2.6.28 主机平台:Ubuntu 11,04 内核版本:2.6.39 1、看门狗驱动的原理 下图是看门狗驱动的原理图 可以看出,PCLK是系统时钟,经过8位的预分频,然后再被分频(16、32、64、128)然后产生计数脉冲,进行计数,当计数器WTCNT加到0或减到0,然后产生中断,或引起系统复位。所以要隔一段时间,重置WTCNT的值,防止WTCNT减到0,称之 喂狗 。 2、驱动分析 下面是自己的驱动分析,如有理解错误,请指正 注,为了尽量是驱动容易理解,这个驱动暂时将有关电源管理的功能删除了,等理解透彻再完善 #in
[单片机]
ARM-Linux<font color='red'>驱动</font>--Watch Dog Timer(看门狗)<font color='red'>驱动</font><font color='red'>分析</font>
LED驱动电路设计方法分析
LED具有 环保 、寿命长、 led /' target='_blank' 光电 效率高等众多优点,近年来在各行各业的应用得以快速发展,LED的 驱动 电路 成了产品应用的一大关键因素。理论上,LED的使用寿命在10万小时以上,但在实际应用过程中,由于 驱动 电路 的设计及驱动方式选择不当,使LED极易损坏。 在设计LED驱动电路时,需要知道LED电流、电压特性,由于LED的生产厂家及LED规格不同,电流、电压特性均有差异。现以白光LED典型规格为例,按照LED的电流、电压变化规律,一般应用正向电压为3.0-3.6V左右,典型值电压为3.3V,电流为20mA,当LED两端的正向电压超过3.6V后,正向电压只有很小的增加,但它
[模拟电子]
s3c2410触摸屏在linux下的驱动分析
触摸屏驱动在/kernel/drivers/char/s3c2410-ts.c 文件中。 该驱动总要有以下重要数据结构: 1.触摸屏的file_operations static struct file_operations s3c2410_fops={ owner: THIS_MODULE, open: s3c2410_ts_open, read: s3c2410_ts_read, release: s3c2410_ts_release, #ifdef USE_ASYNC fasync: s3c2410_ts_fasync, #endif poll: s3c2410_ts_poll, }; 2.全局变量T
[单片机]
LED照明测试技术分析——驱动电源可靠性和能效成关键
近几年 led 作为新型节能光源在全球和中国都赢得得了很高的投资热情和极大关注,并由户外向室内照明应用市场渗透,中国也涌现出大大小小上万家 LED照明 企业。让LED照明大放异彩的最主要原因正是其宣扬的具有节能、环保、长寿命、易控制、免维护等特点。   然而颇具讽刺意味的是,我们常常听闻由于 LED驱动 电源 本身的寿命直接拖累LED照明灯具变得并不“长寿”,极大地增加了维护/使用成本;或者 驱动 电源的效率不高导致LED照明灯具的能效转换比并不是想象中那么高,或者由于输出电流 纹波 没有得到很好的控制影响了发光品质,使得LED照明的绿色节能优势大打折扣,甚至影响了市场普及。   因此,LED产业链的完善和成熟,驱动
[电源管理]
LED照明测试技术<font color='red'>分析</font>——<font color='red'>驱动</font>电源可靠性和能效成关键
四轮独立驱动电动车高速CAN网络数据分析系统设计
伴随着电动汽车的发展,CAN总线通讯技术应用越来越广泛,它可为纯电动汽车上四轮独立驱动控制,以及刹车防抱死系统(ABS)、电子稳定装置(ESP)等主动安全系统的实现提供便利。   在设计CAN总线通信系统时,总要面临着CAN数据的诊断与分析问题,不能解决该问题,便不能完成设计。本文基于Kvaser Leaf Professional HS这一USB_CAN工具,借助于Visual Basic环境,在PC机上开发出数据分析系统,并在该分析系统与四轮独立驱动电动车电机控制板之间实现了CAN通信。通过对CAN总线数据进行诊断分析,能够更好地完成CAN总线系统的设计。 四轮独立驱动 电动车控制策略   电动车实物模
[汽车电子]
四轮独立<font color='red'>驱动</font>电动车高速CAN网络数据<font color='red'>分析</font>系统设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved