基于FPGA的数字示波器图文显示系统的软硬件设计

发布者:zdf1966最新更新时间:2015-04-29 来源: elecfans关键字:FPGA  数字示波器  图文显示系统 手机看文章 扫描二维码
随时随地手机看文章
  应用FPGA设计功能电路时,可以让人们的思路从传统的以单片机或DSP芯片为核心的系统集成型转向单一专用芯片型设计。传统的示波器虽然功能齐全,但是体积大、重量重、成本高、等一系列问题使应用受到了限制。有鉴于此,便携式数字存储采集器就应运而生,它采用了LCD显示、高速A/D采集与转换、ASIC芯片等新技术,具有很强的实用性和巨大的市场潜力,也代表了当代电子测量仪器的一种发展趋势,即向功能多、体积小、重量轻、使用方便的掌上型仪器发展。

  1 系统总体设计读写

  根据设计要求:在示波器上显示2个以上字符或图案,如显示0-9十个数字及英文字符、图象等,结合示波器显示原理,设计电路如图1所示。将要显示的数字或符号进行取模,得到其二进制形式表示。将转换好的数据送入FPGA内部RAM存储。

  


  在设计上我们使用了XILINX的SPARTAN-3芯片,作为控制器,完成总的数控部分、键盘和和显示接口部分的控制。采用八位(或者更高位)D/A转换,对FPGA芯片输出二进制数字量进行数一模转换,在经过高速运算放大器后得到其电压量。分X,Y两路输出给示波器,根据示波器原理,在屏幕上打点显示数字(或者图形)。而Z通道作为另一路独立通道,对显示的数字亮度进行可控显示。

  2 系统硬件设计

  2.1 总体控制模块

  基于本设计,系统控制模块的部分是具有掩膜可编程门阵列的逻辑器件——FPGA。

  Spartan系列FPGA是Xilinx公司可编程逻辑产品中的高性价比产品的代表,而Spartan-Ⅲ系列FPGA是为那些需要大容量、低价格电子应用的用户而设计的。本系统使用的是XILINX公司的XC3S200型号芯片,其技术参数如下:

  ●4 320个逻辑单元;

  ●系统门密度200 k个;

  ●CLB阵列24*20,共480个;

  ●最大用户I/O173,最大差分I/O76;

  ●分布式RAM容量30 Kbit,Block RAM容量216Kbit;

  ●嵌入式18x18乘法器支持高性能DSP应用;

  ●PCI和带有LVDS的高速差分信号。

  2.2 存储单元模块

  由于FPGA基于CMOS SRAM工艺,不具备掉电保护功能,当无电源供电时,配置的数据丢失,芯片的功能也随之丢失。因此,本设计采用FLASH存储器在线重配置的方法。[page]

   

 

 

  2.3 外围电路模块

  2.3.1 D/A转换

  在D/A选择上,我们用的是美国半导体公司的 DAC0832,它具有8位并行、中速(建立时间1 us)、电流型、价格低廉等特点。它有单缓冲工作方式、双缓冲工作方式两种工作方式。单缓冲工作方式时,一个寄存器工作于直通状态,一个工作于受控锁存器状态。在不要求多相D/A同时输出时,可以采用单缓冲方式,此时只需一次写操作,就开始转换,可以提高D/A的数据吞吐量。双缓冲工作方式时,两个寄存器均工作于受控锁存器状态。当要求多个模拟量同时输出时,可采用双重缓冲方式。

  它的技术参数为:建立时间1 us;8位并行;低功率损耗20 mW;支持电压:5 V~15 V。[page]

  2.3.2 运算放大

  在D/A转换之后,我们得到的是电流信号,而需要输入示波器的为电压信号,因此运用运算放大器来进行转换,同时将运放设计为可调形式,通过调节它便可以调节输出电压的大小,达到控制显示幅值的目的。本设计采用LM741系列运放,其技术指标加下:

  

 

  3 系统软件设计

  基于VHDL语言的功能与灵活性,非依赖性和可移植性种种优势,本设计在FPGA编程上采用了VHDL语言实现。总体设计思路:采用50 MHz外部时钟控制对FPGA内部进行分频控制,在分频模块的作用下得到设计所需要的时钟信号。通过按键选通在ROM内部选择要显示的模块部分,进行X、 Y方向扫描,得到初步的数据,同时外加Z方向扫描来控制所显图形的亮度。通过将所有的“1”存储在一个ROM中作为缓存,达到消除零点的目的。将ROM中的数据转移到RAM中,通过乒乓交换操作来进行模式转换,最后通过外围电路输入示波器,实现显示。总体流程图:

  

 

  4 结语

  本文是基于FPGA的数字示波器图文显示系统的硬件/软件的设计思路和设计方案。此系统设计完成后,测试表明系统可以将相应的图形文字显示出来,显示的图形和文字与预期的基本一致。该设计满足了系统的需要,更重要的是具有很强的灵活性和可控性,同时使显示更加高速度快捷,具有非常广阔的应用前景。


关键字:FPGA  数字示波器  图文显示系统 引用地址:基于FPGA的数字示波器图文显示系统的软硬件设计

上一篇:基于OMAP-L138的数字示波器微处理器硬件设计
下一篇:什么时候应该使用示波器?什么时候应该使用逻辑分析仪?

推荐阅读最新更新时间:2024-03-30 22:57

基于ARM和FPGA的便携人工地震数据采集系统设计
近年来,随着可编程逻辑器件(CPLD/FPGA)的迅猛发展,可编程逻辑器件在数据采集、逻辑接口设计、电平接口转换和高性能数字信号处理等领域取得越来越广泛的应用。CPLD/FPGAD不仅可以解决电子系统小型化、低功耗、高可靠性等问题,而且开发周期短、投入少,同时不断下降的芯片价格极大推动了CPLD/FPGA器件在广泛应用领域的使用。本文介绍一种ARM微处理器+FPGA的硬件设计,融合嵌入式Linux技术,实现一种小型化、移动性强、网络耦合度高的便携式人工地震数据采集系统。该系统以满足人工地震观测的需要、减小仪器尺寸和重量、降低功耗、降低野外工作强度和提高数据采集工作效率为目标。 1 系统硬件设计 采集系统由CPU核心板、A/D数
[单片机]
基于ARM和<font color='red'>FPGA</font>的便携人工地震数据采集<font color='red'>系统</font>设计
基于FPGA的自适应数字传感器设计
摘要:高量程加速度传感器在小信号的激励下输出在10 mV以内,传统测试系统的噪声可能覆盖如此小的电压信号,使高量程的加速度传感器无法测试小的加速度信号。针对这一问题提出了基于自动增益切换控制理论的自适应数字传感器,该传感器能够根据加速度信号的输出电压自动选择最佳的电压增益,使高量程加速度传感器始终保持从低量程到高量程的完整加速度信号输出,拓宽了加速度传感器的动态测试范围。 关键词:高量程;加速度传感器;小信号;自适应;数字传感器 高量程加速度传感器的一般灵敏度在1 mV左右,如果加速度信号在1g~10g的范围内,则传感器的输出在1 mV~10 mV,传统测试系统的噪声就可能覆盖如此小的电压信号,那么将会无法测到完整的加速度
[嵌入式]
基于<font color='red'>FPGA</font>的自适应数字传感器设计
发挥你的无限创造力,首款RISC-V SoC FPGA架构问市
近期在加利福尼亚RISC-V峰会上的演示活动展示了将PolarFire SoC的硬件CPU子系统和可编程逻辑相结合实现的尺寸、功耗和性能优势 在5G、机器学习和物联网(IoT)联合推动的新计算时代,嵌入式开发人员需要Linux操作系统的丰富功能,这些功能必须在更低功率、发热量有严格要求的设计环境中满足确定性系统要求,同时满足关键的安全性和可靠性要求。传统的片上系统(SoC)现场可编程门阵列(FPGA)将可重新配置的硬件和Linux处理能力集成到单个芯片上,可以为开发人员提供理想的自定义设备,但这种方法功耗过高,并且安全性和可靠性都无法保证,否则就必须使用缺乏灵活性且昂贵的处理架构。为了解决这些问题,Microchip T
[嵌入式]
发挥你的无限创造力,首款RISC-V SoC <font color='red'>FPGA</font>架构问市
基于现场总线的可重构数控系统的研究
引言     数控系统的开放性、可重构设计、模块化、网络化是当前数控技术领域研究的热点。开放式数控的技术本质是标准化,它的目标是把复杂的数控技术产品体系分割开,形成公认的模块化构件,让更多的厂商能够参与到数控技术的广阔市场中来。显然,模块化是开放式控制的原始基础和技术雏形,而实现这一目标的前提是共同制定一个产品的标准,准确地说,就是制定一个共同遵循接口的标准,以实现庞大数控系统架构的分解和集成。     可重构数控的技术本质是柔性化。其实际上和原有的柔性制造系统一脉相承,只不过加入了管理学和运筹学的技术内容。不同的是,这种管理过程不是完全由人来主导,而是在人预先定义的决策下,由控制系统本身按照某种程度的自动化来实施的,其目
[嵌入式]
利用Spartan-3 FPGA实现高性能DSP功能
  Spartan-3FPGA能以突破性的价位点实现嵌入式DSP功能。本文阐述了Spartan-3 FPGA针对DSP而优化的特性,并通过实现示例分析了它们在性能和成本上的优势。   所有低成本的FPGA都以颇具吸引力的价格提供基本的逻辑性能,并能满足广泛的多用途设计需求。然而,当考虑在FPGA构造中嵌入DSP功能时,必须选择高端FPGA以获得诸如嵌入式乘法器和分布式存储器等平台特性。   Spartan-3 FPGA的面世改变了嵌入式DSP的应用前景。虽然Spartan-3系列器件的价位可能较低,但它们同样具有DSP设计所需的平台特性。这些平台特性能够以较高的面积利用率实现信号处理功能,使设计达到更低价位点。   Spar
[工业控制]
一种基于CPLD的声发射信号传输系统设计
  声发射技术是光纤传感技术和声发射技术相结合的产物,是目前声发射技术的发展趋势。它将高灵敏度声发射传感器安装于受力构件表面以形成一定数目的传感器阵列,实时接收和采集来自于材料缺陷的声发射信号,进而通过对这些声发射信号的识别、判断和分析来对材料损伤缺陷进行检测研究并对构件强度、损伤、寿命等进行分析和研究。   在实际的构件检测中,现场声源信号通常是在100~800 khz之间的微弱高频信号,而且材料损伤检测、声发射源定位往往需要多个传感器形成传感器阵列,而声发射信号的数据传输系统必须达到640 mbps以上的数据传输能力;并应具有应付突发或长时间数据接收和存储能力。本文就是利用CPLD来实现对声发射信号的采集,从而有效解决了数据
[嵌入式]
一种基于CPLD的声发射信号传输<font color='red'>系统</font>设计
FPGA基互联网系统的设计
    信息高速公路增长迅猛,变化迅速,并遇到了严峻挑战。互联风基础结构市场上的激烈竞争,使产品日见复杂,而开发窗口又越来越窄。更为甚者,网络系统开发才必须遵守种种不断发展变化垢标准和协议。在这种严峻的市场条件下,难怪实现可编程硬件会受到互联网基础结构设计者的欢迎。目前的现场可编程门阵列(FPGA)和可编程逻辑器件(PLD),结构上达到数百万门,可支持极为复杂的系统设计。在蓬勃发展中的互联网市场上,热衷于提供服务的PLD厂商又不断地丰富着预定义的组网和通信系统库。     这些预先存在的设计内容,加上有现货的现场可编程器件,将传统的定制集成电路开发周期缩短数月之多。对于组网与互联网支持提供者,可编程性有另一重大优点:
[半导体设计/制造]
便携消费市场FPGA正部分取代ASIC
传统型FPGA基本具备高性能、传输速度快的特点,因此这些产品都具有DSP(数字信号处理)和高速传输I/O接口。它们主要满足基站、工控、医疗等市场对高速产品的需求。SiliconBlue的产品定位与上述传统型FPGA不同。我们强调生产针对便携消费电子市场的低功耗产品。    传统的FPGA企业在低功耗市场上推出的都是密度非常小的器件,只能满足非常简单的逻辑应用,而且即使他们在这方面有系列产品,产品线相对来说仍然不很完整。而SiliconBlue看准这一市场,提供完整的产品线。    市场上一些新兴FPGA企业也在推广消费市场用的低功耗FPGA产品。与他们相比,SiliconBlue的产品基于65纳米SRAM标准工艺,在同等
[手机便携]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved