功率因数的定义与测量方法

发布者:HappyExplorer最新更新时间:2016-10-13 来源: elecfans关键字:功率因数  测量方法 手机看文章 扫描二维码
随时随地手机看文章
 

  1 功率因数的定义

  为了表征交流电源的利用率,在电工学中引入功率因数PF(PowerFactor)这个术语,定义为有用功率P和视在功率S之比值,即

  PF = P/S (1)

  随着各行各业控制技术的发和要求可操作性能的提高,许多场合的用电设备都不直接使用通用交流网提供的交流电作为电能来源,而是通过各种形式对其进行变换,从而得到各种所需的电能形式。它们的幅度、频率、稳定度及变化方式因用电设备的不同而不同,如电动机变频调速器、绿色照明电源、开关电源等等,它们接入电压网后,也有一个交流电源的利用率问题。上述产品有一个共同特点就是:利用桥式整流器和大容量的滤波电容实现AC/DC转换,由工频市电获得直流电压;虽然交流输入电压基本上未出现波形失真,但输入电流却不再保持正弦波形,而是呈不连续的峰值较高的脉冲。如图1所示的桥式整流滤波电路。只有当输入交流电源Uac的瞬时值高于电容C的电压时,整流二极管才导通,Udc基本上维持不变,可见二极管的导通角明显小于180°,输入电流波形严重失真。

图1 桥式整流滤波电路

  图1 桥式整流滤波电路

  设u(t)为瞬时供电线路电压,i(t)为瞬时输入电流,T为输入电压的周期,U、I分别为输入电压、电流的有效值,则有

  

  1) 若对于线性系统纯电阻、电抗性负载,系统输入电压和输入电流呈标准的正弦波形,两者之间存在一个位移角Υ,设 u(f)=Umsinωt i(t)=Imsin(ω+φ)代入式(4)得PF=cosφ。

  2) 若系统输入电压为标准的正弦波,仅有基波分量,即有效值电压为基波电压,输入电流是非正弦信号,即包含基波分量,又含有其它高次谐波。电流基波分量的有效值可视为基波分量的有功分量和无功分量的正交合成φ1为输入电压与输入电流基波之间的相位角。故P = UI1cosφ1,代入式(4)得

  

  把 γ =I1/I 称为谐波因数,把cosφ1叫做相位因数,这样功率因数就等于谐波因数与相位因数的乘积。 设瞬时电流i(t)用傅立叶级数展开如下:

  

  其中n为谐波次数,对于第n次电流谐波,其电流的有效值In和输入电流的有效值I分别为

  

  定义总谐波畸变为

  

  故式(5)变成

  

  可见,线路功率因数与输入电流的波形畸变程度有关,还与基波电压、电流之间的相位的余弦有关,有谐波就必产生无功功率,功率因数就要降低。

  3) 当输入电压和电流都不是正弦波时,式(6)不再适用。

  2 荧光灯功率因数的测定

  电工学和电路原理课程中有测试荧光灯电路功率因数实验,通常功率因数测量有两种方法:一是利用功率因数表;二是利用图2所示的三表法,即功率表、电压表、电流表。有的用电子镇流器与电感式镇流器启动荧光灯做比较实验,让学生明白提高线路功率因数的意义,但在做比较实验时主要存在两个问题:

图2 三表法测量线路功率因数

  图2 三表法测量线路功率因数

  (1)所用仪表为普通的电磁系或电动系仪表;

  (2)所用测试电路不符合国家标准如图3所示。

图3 错误的测试电路

  图3 错误的测试电路

  普通功率因数表测定功率,只适用于50Hz/60Hz的正弦波的测试。若对于测量输入电流波形严重畸变一类的用电线路的功率因数,如电子镇流器,如根据式(6)可知,必定出现非常大的测量误差。采用三表法测量时,若使用普通的电压表、电流表和功率表,计算出来的线路功率因数与实际的偏差较大,有的结果接近1,甚至还会出现大于1的错误结果。

  笔者用不同的仪器对不同品牌40W电子镇流器启动的荧光灯和电感镇流器启动的荧光灯做了实验,其测得的数据如下表:

  

  从上面的实验数据可知,在对同一电子镇流器启动的荧光灯进行测试时,所用的仪表不同,得到的功率因数也不同;对不带功率因数校正电路的电子镇流器要用普通电工仪表和FLUKE电能质量分析仪分别测试,后者较为准确,前者误差最大,主要的误差来自电流的有效值的测量。原因在于普通仪表测量含有大量谐波成份的非正弦信号,测出的结果只能基本上反映基波分量,对于高次谐波有较大的误差,其次从表中可看出,在对于不具备真有效值仪表的条件下,选择带有功率因数校正电路的电子镇流器启动荧光灯做实验,可以降低对仪表的要求,并减小实验误差。

  测量荧光灯线路功率因数的大小,正确的做法需用真有效值数字化仪表并采用正确的接线图(国家标准为GB/T15144)。因为现在电能的逆变技术应用日益广泛,有些产品采用的功率因数校正电路效果不是很理想,使电网中含有各次谐波;另外电子镇流器的工作频率为几十kHz,要使采样后的离散信号无失真地恢复到原来的信号,根据采样定理,采样频率至少为信号频率的2倍,同时若要求测量误差限制在千分之几以内,则上述测量功率因数的数字化仪表采用的A/D转换器至少为12位,转换速率应为μs级。

  3 结束语

  功率因数是一个重要的概念,随着科学技术的发展,其概念有了新的内涵,对测量仪器也有一定的要求,在理论教学中应注意其前提条件,实验操作时应选用合适的仪表和镇流器。


关键字:功率因数  测量方法 引用地址:功率因数的定义与测量方法

上一篇:发电机组绝缘电阻的测量方法
下一篇:医疗产品辐射发射该怎么测试?

推荐阅读最新更新时间:2024-03-30 23:26

基于SVPWM的航空高功率因数整流器设计
       现代飞机越来越多地采用电力作动技术,大量先进机载用电设备的应用使得飞机供电系统容量迅速增加。传统的变压整流器和非线性负载的大量使用使电网中电流谐波含量较高,对飞机供电系统和供电质量造成很大影响。消除电网谐波污染、提高整流器的功率因数是电力电子领域研究的热点。空间矢量PWM(SVPWM)控制具有直流侧电压利用率高、动态响应快和易于数字化实现的特点。本文采用空间矢量技术对三相电压型整流器进行研究,使其网侧电压与电流同相位,从而实现高功率因数整流。   1 空间矢量控制技术   SVPWM控制技术通过控制不同开关状态的组合,将空间电压矢量V控制为按设定的参数做圆形旋转。对任意给定的空间电压矢量V均可由这8条空间
[电源管理]
基于SVPWM的航空高<font color='red'>功率因数</font>整流器设计
低谐波、高功率因数AC/DC开关电源变换器设计
1 问题的提出 随着生产的发展和技术的进步,特别是各种具有整流入端的电力电子负载的广泛应用,即各种非线性的时变的负载和设备的大量涌现,电力系统中产生大量谐波并对电力系统的安全运行产生威胁。电力系统的谐波问题和低功率因数问题,主要由各种中小负载和设备的电子 电源 和电力电子装置造成的,它们是最严重的污染源。 因此应采用有效的措施,降低电子 电源 和电力电子装置的谐波,提高功率因数。目前绝大部分电子电源都采用如图1—1a所示的非控二极管整流、滤波大电容和开关稳压电路结构,把AC电源变换成DC电源。这种AC/DC变换电路的输入电压虽为正弦波,但输入电流却发生了畸变,如图1 1b所示,造成电网侧输入电流严重的非正弦化 输入电流非正弦化必
[电源管理]
低谐波、高<font color='red'>功率因数</font>AC/DC开关电源变换器设计
基于MSP430的高功率因数电源设计方案
  在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分转换为有功功率,从而提高电能输送的效率。提高功率因数必须从相位校正技术和谐波消除技术两个方面考虑,无功分量基本上为高次谐波,谐波电流在输电线路阻抗上的压降会使电网电压发生畸变,影响供电系统的供电质量,谐波会增加电网电路的损耗。解决用电设备谐波污染的主要途径有两种:   一是增设电网补偿设备(有源滤波器和无源滤波器)以补偿电力电子设备、装置产生的谐波;二是改进电力电子装置本身,使之不产生或产生很小的谐波,如采用功率因数校正技术。两者相比较前者是消极的方法,即在装置产生谐波后,进行
[电源管理]
基于MSP430的高<font color='red'>功率因数</font>电源设计方案
变压器绕组直流电阻的正确测量方法
测量变压器绕组直流电阻的目的是:检查绕组接头的焊接质量和绕组有无匝间短路现象;电压分接开关的各个位置接触是否良好及分接的实际位置是否相符;引出线有无断裂,多股导线并绕组是否有断股等情况。变压器在大修时或改变分接头位置后,或者出口故障短路后,需要测量绕组连同套管一起的直流电阻。测量方法如下。 (1)电流、电压表法。又称电压降法,其原理是在被测电阻中通以直流电流,测量该电阻上的电压降,根据欧姆定律即可算出被测电阻值。由于电流表和电压表的内阻对测量结果会产生影响,所以它们被接入测量电路的方式应慎重考虑。 (2)平衡电桥法。它是一种采用电桥平衡的原理来测量直流电阻的方法,常用的平衡电桥有单臂和双臂电桥两种。测量变压器的直流电阻时,应在变压
[测试测量]
一种新颖的电流连续模式功率因数校正电路的研究
摘要:介绍了一种固定关断时间控制的功率因数校正电路,它的主要特点是通过外部简单电路来控制开关管的关断时间,从而实现了固定关断时间,这样可以提高输出功率等级。实验表明:这种控制方法实现了固定关断时间控制。 关键词:固定关断时间;功率因数校正;电流连续模式 引言 目前以Boost为主电路的PFC电路的控制方法有两种,即固定频率PWM(CCM)和临界导通PWM(DCM)。对于相同的输出功率等级来说,DCMPFC电路中的峰值电流要比CCMPFC电路中的峰值电流大。一般说来,对于小功率PFC电路,采用DCM的控制方法;对于大功率PFC电路,则采用CCM的控制方法;对于中间功率,则希望电路根据输入电压和负载工作在CCM或DCM,这样就可以提高电
[电源管理]
关于激光位移传感器测量方法的介绍
激光位移传感器的测量方法是什么?激光位移传感器是一种常用的测量仪器,在多个行业中都有一定的应用。激光位移传感器有两种常用的测量方法,三角测量法和回拨分析法。大家对于这两种测量方法都了解过吗?下面小编就来为大家具体介绍一下激光位移传感器的侧测量方法吧,希望可以帮助到大家。 三角测量法 激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下 看见 这个光点。 根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。 同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计
[测试测量]
一种新型boost功率因数预调节器的研究
1 引言   将220V电网电压经二极管整流、电容滤波提供直流电压是传统应用中最为广泛的变流方案。但是,输入产生的脉动电流会危害电网,使输入端功率因数下降,造成电网供电质量的下降和谐波损耗的增加。因此功率变换器的功率因数校正及控制问题已越来越引起人们的重视 。   功率因数校正有多种方式,较为理想的方法是在电源内部采用功率因数校正措施,将电源装置的网侧电流正弦化。有源功率因数校正(APFC)技术可将电源等效为纯电阻,极大地提高功率因数,减小高次谐波。在各种功率因数校正中,单相boost电路具有效率高、电路简单、成本低等优点得到了广泛应用 。文献 提出了带软开关的功率因数校正变换器,这些变换器具有如下局限性:(1)开关管承受高的电
[电源管理]
一种新型boost<font color='red'>功率因数</font>预调节器的研究
接地电阻测试仪的几种测量方法
单钳测量接地电阻测试仪   测量多点接地中的每个接地点的接地电阻,而且不能断开接地连接防止发生危险。适用于:多点接地,不能断开连接,测量每个接地点的电阻。接线:用电流钳监测被测接地点上的电流。CA6415采用了单钳测量接地电阻测试仪   双钳法接地电阻测试仪   条件:多点接地,不打辅助地桩,测量单个接地。接线:使用厂商指定的电流钳接到相应的插口上,将两钳卡在接地导体上,两钳间的距离要大于0.25米。   两线法接地电阻测试仪   条件:必须有已知接地良好的地,如PEN等,所测量的结果是被测地和已知地的电阻和。如果已知地远小于被测地的电阻,测量结果可以作为被测地的结果。适用于:楼群稠密或水泥地等密封无法打地桩的地区。接线:E+
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved