280 W移相全桥软开关DC/DC变换器设计

最新更新时间:2010-08-07来源: 电子设计工程关键字:软开关变换器  寄生振荡  箝位二极管  尖峰电压 手机看文章 扫描二维码
随时随地手机看文章

    移相控制的全桥PWM变换器是最常用的中大功率DC/DC变换电路拓扑形式之一。移相PWM控制方式利用开关管的结电容和高频变压器的漏电感或原边串联电感作为谐振元件,使开关管能进行零电压开通和关断,从而有效地降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器提高开关频率、提高效率、减小尺寸及减轻质量提供了良好的条件。然而,传统的移相全桥变换器的输出整流二极管存在反向恢复过程,会引起寄生振荡,二极管上存在很高的尖峰电压,需增加阻容吸收回路进行抑制,文献提出了两种带箝位二极管的拓扑,可以很好地抑制寄生振荡。本文采取文献提出的拓扑结构,设计了一台280 W移相全桥软开关DC/DC变换器,该变换器输入电压为194~310 V,输出电压为76V。

1 主电路拓扑及工作过程分析

    本设计所采用的主电路拓扑如图1所示。其中VQ1~VQ4为4个开关管,VD1~VD4分别是4个开关管的寄生二极管,C1~C4分别为4个开关管的结电容和外接电容,VQ5和VQ6是2个箝位二极管,Lr是谐振电感,VDR1和VDR5为输出整流二极管,CDR1和CDR2为输出整流二极管的等效并联电容。VQ1和VQ3组成超前桥臂,VQ2和VQ4组成滞后桥臂,每个桥臂的2个开关管互补180°导通,2个桥臂的导通角相差1个相位。即移相角,通过调节该相位就可以调节输出电压。这种拓扑通过增加2个箝位二极管VQ5、VQ6来消除次级整流管反向恢复引起的电压振荡,减小了次级整流管的电压应力,并且箝位二极管VQ5、VQ6,在一个周期里分别只导通一次,减小了二极管VQ5,VQ6的电流损耗,提高了变换器的效率。图2为变换器的工作波形,其中,iLr为Lr上的电流,ip为变压器原边电流,UAB为A、B两点电压差,iD5为VD5的电流,iD6为VD6的电流。

    图2中,在一个开关周期中,该变换器有16种开关状态,这里只分析前8种状态。在分析前,先作如下假设:除输出整流二极管外,所有开关管、二极管、电感和电容均为理想器件:变压器的漏感很小,可以忽略不计;Lf>>Lr/K2(K是变压器原副边匝比):输出整流二极管等效为一个理想二极管和一只电容的并联。

    1)状态1[t0,t1]:在t0时刻以前,VQ1,VQ4和VDRl导通。在t0时刻,VQ1关断,谐振电感上的电流iLr对C1充电,对C2放电,由于有C1和C2,VQ1为零电压关断,VD5和VD6不导通。

    2)状态2t1,t2]:t1时刻,C3的电压降为O,VD3自然导通,此时可以零电压开VQ3。CDR2继续放电,iLr和变压器原边电流ip继续下降。

    3)状态3[t2,t3]:t2时刻,CDR2完全放电,VDR2导通,2个整流二极管都导通,副边短接,iLr和ip相等,处于自然续流状态。

    4)状态4[t3,t4]:t3时刻,关断VQ4,ip给C2放电,给C4充电,iLr和ip相等,一起线性下降,由于有C2和C4,VQ4是零电压关断。

    5)状态5[t4,t6]:t4时刻,VD2导通,VD2能够零电压开通。t5时刻,ip由正向过零,且向负方向增加,由于ip不足以提供负载电流,VDR1和VDR2仍然导通,Vin全部加在Lr上,iLr和ip同时线性负增长。

    6)状态6[t6,t7]:t6时刻,VDR1关断,VDR2流过全部负载电流。Lr与CDR1谐振,给CDR1充电,iLr和ip继续线性负增长。

    7)状态7[t7,t8]:t7时刻,Cdr1电压上升到2Vm,VD6导通,将原边电压箝位在Vin,因此CDR1电压被箝位在2Vin/K,到t8时刻,ip等于iLr,VD6关断。

    8)状态8[t8,t9]:在此状态中,原边给负载提供能量,iLr和ip相等。

2 磁性元器件设计

2.1 变压器设计

    变压器原副边匝数比为
   
式中,Vin min为输出电压最小值,V。为输出电压,VD为输出整流二极管压降,Dmax为副边最大占空比,这里取为0.8,因此,匝数比K取为2。

    用铁氧体磁芯EE55绕制该变压器,原边用7根线径为0.33 mm的漆包线并绕28匝,副边用11根线径为O.33 mm的漆包线并绕14匝。

2.2 输出滤波电感设计

    输出滤波电感应能够存储足够大的能量,能够在次级整流管自然续流时为负载提供连续的电流。当变换器输入为310 V时,续流时间最大,为:
   
式中,滤波电感上电流的脉动量△iLf=20%Iomax,因此,Lf取为330 μs。

    用铁氧体磁芯PQ40绕制该电感,用18根线径为0.33 mm的漆包线并绕3l匝,气隙为0.7 mm。

2.3谐振电感设计

    超前臂利用滤波电感和谐振电感的能量很容易实现软开关,而滞后臂只能利用谐振电感的能量来实现软开关,相对超前臂来说,滞后臂只能在较窄的负载范嗣内实现软开关。为了实现滞后臂的软开关,必须满足:

   

式中,Coss为开关管的寄生和外接电容,为300 pF,I为滞后臂关断时原边电流的大小,而变换器在1/3满载时,
   
    由式(4)式(5)可以得到谐振电感


    
    因此,Lr取为120μH。用铁氧体磁芯PQ40绕制该电感,用7根线径为0.33 mm的漆包线并绕32匝,气隙为2 mm。

3 实验结果

    本文设计的变换器的主要参数如下:Vin=194-310 V,Vo=76V,Pomax=280 W,K=2,f=80 kHz,Lr=120μH,Lr=330μH,Co=3000μF,开关管采用12N60,Coss=300 pF。

    图3为超前臂的ZVS波形,图4为滞后臂的ZVS波形。输入电压为250 V,VCS为驱动电压,VDS为漏源电压,由图3和图4可以看出变换器的超前臂和滞后臂都可以实现零电压开通。

    图5为输出整流二极管VDR1电压波形,VDR1为VDR1两端的端电压,由图5可知,VDR1关断后,经过很小一段时间,箝位二极管VD6开通,将VDR1箝位,没有出现电压振荡,当VD6截止后,出现了很小的电压振荡,电压尖峰值不大于箝位电压,因此次级整流管的的电压应力可以大大减小。

4 结论

    本文分析了一种移相全桥软开关变换器的拓扑,在分析的基础上设计了一台280 W的软开关DC/DC变换器,该变换器在变压器原边采用2个箝位二极管。实验证明,该方案在实现开关管零电压开关的同时,能够有效地抑制输出整流二极管反向恢复所带来的电压振荡,减小了次级整流二极管的电压应力。

关键字:软开关变换器  寄生振荡  箝位二极管  尖峰电压 编辑:金海 引用地址:280 W移相全桥软开关DC/DC变换器设计

上一篇:100V 隔离型反激式 DC/DC 控制器 无需光耦合器
下一篇:工业高电压应用的合成电源方案

推荐阅读最新更新时间:2023-10-18 14:59

移相式零电压软开关变换器与UC3875的应用
    摘要: 介绍开关电源的发展过程及其主要发展方向,着重介绍移相式软开关变换器的工作原理和工作过程,以及UC3875的应用。     关键词: 软开关  谐振变换器  移相式零电压变换器 1 引言     从传统的线性电源到目前的开关电源,尤其从70年代以来大规模集成电路技术的发展,使开关电源有了质的飞跃,从而在电源产品中掀起了一股高频化、小型化、模块化的浪潮。目前,开关电源的体积主要还是由电容、电感和变压器等储能元件决定,因而开关电源的小型化,实质上就是一个减小储能元件体积的过程。在一定频率范围之内,开关频率的提高,不仅能有效地减小电容、电感和变压器的体积,还能抑制干扰,改善系统的动态性能
[应用]
一种新型软开关DC-DC变换器
1 引言 图1 基本升压式变换器原理电路 2 基本评价 3 提出的新变换拓扑 图6 新型软开关变换器原理电路   图6是提出的新型软开关变换器原理电路。在一个开关周期内分为11种工作模式。 4 实验结果   输入电压:Vin=150V   输出电压:Vo=340V   输出功率:Po=1000W   开关频率:f=50kHz   从实验结果看,主功率开关和辅助功率开关均实现了软开关,且变换器效率较高。 5 结论 参考文献 Zero-voltage-transition pulse-width-modulated converters 美
[电源管理]
一种新型<font color='red'>软开关</font>DC-DC<font color='red'>变换器</font>
光伏并网系统DC/DC全桥软开关变换器的研究
  目前并网逆变器市场上大多采用工频隔离型并网逆变器,由于工频变压器会使系统效率变低、体积大、成本高等缺点,近年来,高频隔离型并网逆变器也逐渐成为研究热点;但是逆变器的高频化会带来高电磁干扰(EMI)和高开关损耗,同时考虑到光伏并网系统作为大功率系统的应用,因此移相全桥软开关变换器(FB-ZVZCS)很适用于光伏并网中的DC/DC环节。   现阶段,实现FB-ZVZCS的方法有很多,主要有滞后桥臂串阻塞二极管、原边串饱和电抗器,副边有源钳位等等;文献提出了一种副边无源钳位的ZVZCS变换器,本文结合光伏逆变器的特点并从电路结构简单、占空比丢失小、副边整流二极管寄生振荡小、效率高的角度出发,采用无源钳位的ZVZCS变换器作为光伏
[电源管理]
光伏并网系统DC/DC全桥<font color='red'>软开关</font><font color='red'>变换器</font>的研究
基于光伏并网系统DC/DC全桥软开关变换器研究
  目前并网逆变器市场上大多采用工频隔离型并网逆变器,由于工频变压器会使系统效率变低、体积大、成本高等缺点,近年来,高频隔离型并网逆变器也逐渐成为研究热点;但是逆变器的高频化会带来高电磁干扰(EMI)和高开关损耗,同时考虑到光伏并网系统作为大功率系统的应用,因此移相全桥软开关变换器(FB-ZVZCS)很适用于光伏并网中的DC/DC环节。   现阶段,实现FB-ZVZCS的方法有很多,主要有滞后桥臂串阻塞二极管、原边串饱和电抗器,副边有源钳位等等;文献提出了一种副边无源钳位的ZVZCS变换器,本文结合光伏逆变器的特点并从电路结构简单、占空比丢失小、副边整流二极管寄生振荡小、效率高的角度出发,采用无源钳位的ZVZCS变换器作为光伏
[电源管理]
基于光伏并网系统DC/DC全桥<font color='red'>软开关</font><font color='red'>变换器</font>研究
双正激变换器软开关拓扑的分析与评价
1. 引言   双正激变换器克服了正激变换器中开关电压应力高的缺点,每个开关管只需承受输入直流电压,不需要采用特殊的磁复位电路就可以保证变压器的可靠磁复位。它的每一个桥臂都是由一个二极管与一个开关管串联组成,不存在桥臂直通的危险,可靠性高。因此双正激变换器具有其它变换器无法比拟的优点,成为目前中大功率变换器中应用最多的拓扑之一。双正激组合变换器通过对双正激变换器进行并、串组合,可以克服其占空比只能小于0.5的缺点,提高变压器的利用率和变换器的等效占空比,适合应用于高输入和输出电压的大功率场合 。   现代电源的发展方向是高频化、小型化、模块化、智能化,实现变换器的高功率密度、高效率和高可靠性。提高开关频率,减小磁性元件的体积和重量
[电源管理]
双正激<font color='red'>变换器</font><font color='red'>软开关</font>拓扑的分析与评价
Littelfuse 瞬态抑制二极管阵列,可保护超高速数据线免受低电压瞬态尖峰影响
Littelfuse SPxxR6瞬态抑制二极管阵列,可保护超高速数据线免受低电压瞬态尖峰影响 新产品是保护USB 4.0和其他用于移动和便携式消费电子产品数据通信接口的理想选择 中国北京,2022年3月8日讯 – Littelfuse公司 , Littelfuse公司 是一家工业技术制造公司,致力于为可持续发展、互联互通和更安全的世界提供动力。Littelfuse公司宣布推出全新SP33R6系列四通道、低电容(0.2pF)的瞬态抑制二极管阵列。 这些功能强大的二极管可提供极低的击穿/导通电压,是低电压(- 0.3~+0.3V)高速数据线的理想保护元件。 它可以安全吸收高于IEC61000-4-2国际标准规定的最高级别(
[电源管理]
Littelfuse 瞬态抑制二极管阵列,可保护超高速数据线免受低<font color='red'>电压</font>瞬态<font color='red'>尖峰</font>影响
全桥变换器结构 软开关移相电源设计
全桥 变换器是 开关电源 的基础拓扑结构之一,其作用不言而喻,小编在本文将要分享的这款设计就是采用全桥变换器结构, MOSFET 作为开关管来使用,采用移相ZVZCSPWM控制,即超前臂开关管实现 ZVS、滞后臂开关管实现ZCS。 电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、 VT2的反并超快恢复 二极管 ,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频,VD3、VD4是反向电流阻断二极管,用来实现滞后臂 VT3、VT4的ZCS,Llk为 变压器 漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等 滤波器 件
[电源管理]
全桥<font color='red'>变换器</font>结构 <font color='red'>软开关</font>移相电源设计
实现半桥DC/DC变换器软开关的PWM控制解决方案
经常被用于中小功率电路设计的DC-DC转换器一直是工程师们在进行电源设计时候的首选。半桥电路由两个功率开关器件总成,并向外提供方波信号。大家都知道,常见的半桥控制器通常有两种控制方法,一种是对称控制,而另一种则是不对称互补控制,本文主要分析实现半桥DC/DC变换器软开关的PWM控制策略。 在本文中缓冲型软开关对称PWM控制策略是指对称控制半桥变换器磁心双向磁化,利用率高,且不存在偏磁。控制方便,控制特性线性。功率管上电压应力低,适用于高输入电压场合,但此种半桥变换器较难实现软开关,变换器效率难以得到提高。 对称PWM 控制ZVS半桥变换器 对称式PWM 控制ZVS半桥变换器,其与传统半桥电路相比,对称PWM控制的ZVS
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved