IGBT在不间断电源中的应用

最新更新时间:2011-09-07来源: chinaaet关键字:IGBT  MOSFET  UPS 手机看文章 扫描二维码
随时随地手机看文章

    1. 引言
    在UPS 中使用的功率器件有双极型功率晶体管、功率MOSFET、可控硅和IGBT,IGBT 既有功率MOSFET 易于驱动,控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大的优点、使用IGBT 成为UPS 功率设计的首选,只有对IGBT的特性充分了解和对电路进行可靠性设计,才能发挥IGBT 的优点。本文介绍UPS 中的IGBT 的应用情况和使用中的注意事项。

    2. IGBT 在UPS 中的应用情况
    绝缘栅双极型晶体管(IGBT)是一种MOSFET 与双极晶体管复合的器件。据东芝公司资料,1200V/100A 的IGBT 的导通电阻是同一耐压规格的功率MOSFET 的1/10,而开关时间是同规格GTR 的1/10。由于这些优点,IGBT广泛应用于不间断电源系统(UPS)的设计中。这种使用IGBT 的在线式UPS 具有效率高,抗冲击能力强、可靠性高的显著优点。
    UPS 主要有后备式、在线互动式和在线式三种结构。在线式UPS 以其可靠性高,输出电压稳定,无中断时间等显著优点,广泛用于通信系统、税务、金融、证券、电力、铁路、民航、政府机关的机房中。本文以在线式为介绍对象,介绍UPS 中的IGBT 的应用。
    图1 为在线式UPS 的主电路,在线式UPS 电源具有独立的旁路开关、AC/DC 整流器、充电器、DC/AC 逆变器等系统,工作原理是:市电正常时AC/DC 整流器将交流电整流成直流电,同时对蓄电池进行充电,再经DC/AC 逆变器将直流电逆变为标准正弦波交流电,市电异常时,电池对逆变器供电,在UPS 发生故障时将输出转为旁路供电。在线式UPS输出的电压和频率最为稳定,能为用户提供真正高质量的正弦波电源。
 
图1 在线式不间断电源主电路图
①旁路开关(AC BYPASS SWITCH)
    旁路开关常使用继电器和可控硅。继电器在中小功率的UPS 中广泛应用。优点是控制简单,成本低,缺点是继电器有转换时间,还有就是机电器件的寿命问题。可控硅常见于中大功率UPS 中。优点是控制电流大,没有切换时间。但缺点就是控制复杂,且由于可控硅的触发工作特性,在触发导通后要在反向偏置后才能关断,这样就会产生一个最大10ms 的环流电流,如图2。如果采用IGBT,如图3,则可以避免这个问题,使用IGBT 有控制简单的优点,但成本较高。其工作原理为:当输入为正半周时,电流流经Q1、D2,负半周时电流流经D1、Q2。
 
图2:SCR 的延时关断现象图                                                 图3:应用IGBT 的旁路开关
②整流器AC/DC
    UPS 整流电路分为普通桥堆整流、SCR 相控整流和PFC 高频功率因数校正的整流器。传统的整流器由于基频为50HZ,滤波器的体积重量较重,随着UPS 技术的发展和各国对电源输入功率因数要求,采用PFC 功率因数校正的UPS 日益普及,PFC 电路工作的基频至少20KHZ,使用的滤波器电感和滤波电容的体积重量大大减少,不必加谐波滤波器就可使输入功率因数达到0.99,PFC 电路中常用IGBT 作为功率器件,应用IGBT 的PFC 整流器是有效率高、功率容量大、绿色环保的优点。
③充电器
    UPS 的充电器常用的有反激式、BOOST 升压式和半桥式。大电流充电器中可采用单管IGBT,用于功率控制,可以取得很高的效率和较大的充电电流。
④DC/AC 逆变器
    3KVA 以上功率的在线式UPS 几乎全部采用IGBT 作为逆变部分的功率器件,常用全桥式电路和半桥电路,如下图4。

3. IGBT 损坏的原因
    UPS 在使用过程中,经常受到容性或感性负载的冲击、过负荷甚至负载短路等,以及UPS 的误操作,可能导致IGBT 损坏。IGBT 在使用时的损坏原因主要有以下几种情况:

  1. 过电流损坏;
        IGBT 有一定抗过电流能力,但必须注意防止过电流损坏。IGBT 复合器件内有一个寄生晶闸管,所以有擎住效应。图5 为一个IGBT 的等效电路,在规定的漏极电流范围内,NPN 的正偏压不足以使NPN 晶体管导通,当漏极电流大到一定程度时,这个正偏压足以使NPN 晶体管开通,进而使NPN 和PNP 晶体管处于饱和状态,于是寄生晶闸管开通,门极失去了控制作用,便发生了擎住效应。IGBT 发生擎住效应后,漏极电流过大造成了过高的功耗,最后导致器件的损坏。
  2. 过电压损坏;
        IGBT 在关断时,由于逆变电路中存在电感成分,关断瞬间产生尖峰电压,如果尖峰电压过压则可能造成IGBT 击穿损坏。
  3. 桥臂共导损坏;
  4. 过热损坏和静电损坏。

4. IGBT 损坏的解决对策

  1. 过电流损坏
        为了避免IGBT 发生擎住效应而损坏,电路设计中应保证IGBT 的最大工作电流应不超过IGBT 的IDM 值,同时注意可适当加大驱动电阻RG 的办法延长关断时间,减小IGBT 的di/dt。驱动电压的大小也会影响IGBT 的擎住效应,驱动电压低,承受过电流时间长,IGBT 必须加负偏压,IGBT 生产厂家一般推荐加-5V 左右的反偏电压。在有负偏压情况下,驱动正电压在10—15V 之间,漏极电流可在5~10μs 内超过额定电流的4~10 倍,所以驱动IGBT 必须设计负偏压。由于UPS 负载冲击特性各不相同,且供电的设备可能发生电源故障短路,所以在UPS 设计中采取限流措施进行IGBT的电流限制也是必须的,可考虑采用IGBT 厂家提供的驱动厚膜电路。如FUJI 公司的EXB841、EXB840,三菱公司的M57959AL,57962CL,它们对IGBT 的集电极电压进行检测,如果IGBT 发生过电流,内部电路进行关闭驱动。
        这种办法有时还是不能保护IGBT,根据IR 公司的资料,IR 公司推荐的短路保护方法是:首先检测通态压降Vce,如果Vce 超过设定值,保护电路马上将驱动电压降为8V,于是IGBT 由饱和状态转入放大区,通态电阻增大,短路电路减削,经过4us 连续检测通态压降Vce,如果正常,将驱动电压恢复正常,如果未恢复,将驱动关闭,使集电极电流减为零,这样实现短路电流软关断,可以避免快速关断造成的过大di/dt 损坏IGBT,另外根据最新三菱公司IGBT 资料,三菱推出的F 系列IGBT 的均内含过流限流电路(RTC circuit),如图6,当发生过电流,10us 内将IGBT 的启动电压减为9V,配合M57160AL 驱动厚膜电路可以快速软关断保护IGBT。
     
    图5:IGBT 等效电路图                                         图6 三菱F 系列IGBT 的RCT 电路
  2. 过电压损坏
        防止过电压损坏方法有:优化主电路的工艺结构,通过缩小大电流回路的路径来减小线路寄生电感;适当增加IGBT 驱动电阻Rg 使开关速度减慢(但开关损耗也增加了);设计缓冲电路,对尖峰电压进行抑制。用于缓冲电路中的二极管必须是快恢复的二极管,电容必须是高频、损耗小,频率特性好的薄膜电容。这样才能取得好的吸收效果。常见电路有耗能式和回馈式缓冲电路。回馈式又有无源式和有源式两种,详细电路设计可参见所选用器件的技术手册。
  3. 桥臂共导损坏
        在UPS 中,逆变桥同臂支路两个驱动必须是互锁的,而且应该设置死区时间(即共同不导通时间)。如果发生共导,IGBT 会迅速损坏。在控制电路应该考虑到各种运行状况下的驱动问题控制时序问题。
  4. 过热损坏
        可通过降额使用,加大散热器,涂敷导热胶,强制风扇制冷,设置过温度保护等方法来解决过热损坏的问题。

此外还要注意安装过程中的静电损坏问题,操作人员、工具必须进行防静电保护。

5. 结论

  1. IGBT 兼具有功率MOSFET 和GTR 的优点,是UPS 中的充电、旁路开关、逆变器,整流器等功率变换的理想器件。
  2. 只有合理运用IGBT,并采取有效的保护方案,才可能提高IGBT 在UPS 中的可靠性。

参考文献:
1, IR 公司2000 年IGBT 模块应用技术研讨会论文集
2, 三菱电机功率模块工业应用技术研讨会资料
3, IGBT 的过电流及其保护 西安交大 秦祖荫
4, 现代电力电子技术 张立 赵永健

关键字:IGBT  MOSFET  UPS 编辑:探路者 引用地址:IGBT在不间断电源中的应用

上一篇:Diodes 电源开关提供全面USB 端口保护
下一篇:前端UPS电源设计与维护

推荐阅读最新更新时间:2023-10-18 15:39

综述UPS电路技术的发展历程
  最初的UPS输出逆变器都是带有输出变压器的。应该说,采用输出变压器是UPS逆变器输出电路形式所决定的,而变压器的存在却是弊大于利。逆变器电路技术演变过程的一个显着的表现形式是:是否必须用变压器,如何配置变压器,是否可能去掉变压器。   图1是20世纪70年代生产的第一代三相UPS的典型电路结构形式。      图1所示的UPS(不间断 电源 )包括一个由降压式自耦变压器绕组供电的二极管全波整流器和一个与整流器相并联的、由自耦变压器的辅助二次侧绕组供电的可控硅电池充电器。当电网停电时静态开关可将电池组连接到直流母线上供电。   逆变器由4个三相逆变器以全波方式运行(按照基波频率进行换向),每一个三相逆变器都与变压器的一次侧绕
[电源管理]
综述<font color='red'>UPS</font>电路技术的发展历程
Vishay 汽车级功率MOSFET获《今日电子》2017年度“Top-10电源产
日前, Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布 , 其Vishay Siliconix SQJQ480E 80 V汽车级TrenchFET ® N 沟道功率MOSFET被《今日电子》杂志和21IC评为第15届年度“Top-10电源产品”。这款AEC-Q101认证器件以高效汽车应用荣获“绿色节能奖”。这是威世产品连续第八年获此殊荣。 “Top-10电源产品”奖已成为创新电源产品的行业标杆,产品根据开创性设计、技术或应用方面取得的显著进步、以及性价比的显著提高进行评比。此项评选还包括五个单项奖,分别表彰产品在五个方面取得的进步:技术突破、最佳应用、优化开发、绿色节能和自主创新。
[汽车电子]
待机状态耗电量仅为3μA,东芝MOSFET栅极驱动器开关IPD问市
东芝电子元件及存储装置株式会社(“东芝”)今日宣布,推出栅驱动器开关IPD “TPD7107F”。该产品可用于控制接线盒和车身控制模块等车载控制单元(ECU)的供电电流的通断,并计划于今日开始出货。 TPD7107F产品示意图 TPD7107F采用东芝的汽车级低导通电阻N沟道MOSFET ,适用于负载电流的高侧开关。作为一种电子开关,这种新型IPD能够避免机械继电器的触头磨损,有助于缩小车载ECU的尺寸并降低功耗,同时还提供免维护功能。 通过提供增强功能(自我保护功能和输出到微控制器的各种内置诊断功能)以支持车载ECU所需的高可靠性。这款新型IPD能够监控负载运行和与之连接的MOSFET。当运行发生异常时,它能迅
[汽车电子]
待机状态耗电量仅为3μA,东芝<font color='red'>MOSFET</font>栅极驱动器开关IPD问市
介绍一种实用、优秀的MOSFET驱动结构
现各大公司的 MOSFET 驱动器层出不穷,主要是针对小功率使用,使用有很多限制。在工业应用上,大批还是用传统的驱动方式。但传统驱动方式往往存在隐患。 比如桥式驱动,由于隔离电容的存在,带来瞬态不好。由于隔离电容与驱动初级等效电感的时间常数很大,往往大于调整速度,很难保证动态调整时不引起谐振。这是电源在开关机及运行过程中的主要失效形式,却一直得不到重视。往往造成开关管损坏却始终查不到原因,大部分人把原因就归于开关管质量不好。 桥式驱动往往用于移向控制,由于桥式驱动的固有缺陷,会在关闭时产生反向电平,情况严重时会产生直通。 这里介绍的磁芯驱动器结构就是针对传统驱动结构的一个改进。适合于占空比不大于 50% 驱动
[电源管理]
介绍一种实用、优秀的<font color='red'>MOSFET</font>驱动结构
静态开关的UPS电源主电路图
UPS电源依据逆变器组合方式可分为转换型和并机型,设置静态开关的单相转换型UPS电源主电路框图如图所示。由图可知,当市电正常时,以逆变器输出作为主用电源供给负载。为了便于维修,设置了一个手动维修旁路开关,即检修时先让旁路开关S,闭合,然后使S2、S3和静态开关断开。改由备用电源向负载供电,则UPS系统与旁路系统脱离,此时便可对逆变器、静态开关做维修。当逆变器作主用电源时,先合上静态开关和旁路开关S2、S3,再断开S1。
[电源管理]
静态开关的<font color='red'>UPS</font>电源主电路图
反激式电源中MOSFET的钳位电路
输出功率100W以下的AC/DC电源通常都采用反激式拓扑结构。这种电源成本较低,使用一个控制器就能提供多路输出跟踪,因此受到设计师们的青睐,且已成为元件数少的AC/DC转换器的标准设计结构。不过,反激式电源的一个缺点是会对初级 开关元件 产生高应力。   反激式拓扑结构的工作原理,是在电源导通期间将能量储存在变压器中,在关断期间再将这些能量传递到输出。反激式变压器由一个磁芯上的两个或多个耦合绕组构成,激磁能量在被传递到次级之前,一直储存在磁芯的串联气隙间。实际上,绕组之间的耦合从不会达到完美匹配,并且不是所有的能量都通过该气隙进行传递。少量的能源储存在绕组内和绕组之间,这部分能量被称为变压器漏感。开关断开后,漏感能量不会传递
[电源管理]
从MCU转到IGBT 汽车芯片呈结构性紧缺
汽车行业分析公司AFS的最新数据显示,由于芯片短缺,今年全球汽车市场累计减产量约为281.02万辆。AFS预测,到今年年底,全球汽车制造商将减产368.06万辆。    在过去的两年里,全球范围内的芯片短缺令所有人措手不及,其中最受影响的就是汽车芯片,导致各大汽车厂商陷入“停产待芯”的境地,纷纷放出了减产的消息。而近期,消费电子类的芯片需求大幅降低,出现减产砍单的现象,各大芯片厂商也将产能转向了更热门的汽车芯片,并且更多的厂商也加入了汽车芯片的生产行列,于是就有“汽车芯片已经不再紧缺”的消息传出。但据记者了解,仅仅是部分汽车芯片得到了缓解,整个汽车芯片市场正在向结构性紧缺上转变。这其中最为紧俏的,甚至被称为卡住汽车生产“喉咙”的就
[汽车电子]
通用光纤隔离驱动在大功率IGBT中的应用
O 引言   自MOSFET及IGBT问世以来,电压控制型电力电子器件,特别是IGBT正经历一个飞速发展的过程。IGBT单模块器件的电压越做越高,电流越做越大。同时,与之配套的驱动器件也得到了迅速发展。随着器件应用领域越来越广,电源设备变换功率越来越大,电磁T扰也相应增强。为此必须提高控制板的抗干扰能力,提高驱动耐压等级。于是,光纤的使用也就成为了必然。 1 ICBT驱动的几种方式   不同功率等级的IGBT,对驱动的要求不尽相同,表1给出了目前常用的几种驱动方式的比较。   由表l可知,在大功率电力变换装置中只能使用变压器或光纤隔离,其中尤以光纤隔离为最佳选择。 2 光纤收发器的种类   目前,大
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved