基于变压器的运行维护和故障处理方案

最新更新时间:2011-10-22来源: 互联网关键字:变压器  运行维护  故障处理 手机看文章 扫描二维码
随时随地手机看文章

电力变压器在电厂有着很重要的作用, 然而, 由于其结构、工艺以及运行维护等多方面的原因, 变压器故障在电厂频繁发生, 大大影响了电厂的正常生产。因此, 加强变压器的定期维护, 采取切实有效的措施防止变压器故障的发生, 对确保变压器的安全稳定运行有重要的意义。
1 变压器常见的故障现象分类及原因
( 1) 变压器本身出厂时就存在的问题。如端头松动、垫块松动、焊接不良、铁心绝缘不良、抗短路强度不足等。
 
( 2) 线路干扰。线路干扰在造成变压器事故的所有因素中属于最重要的。主要包括: 合闸时产生的过电压, 在低负荷阶段出现的电压峰值,线路故障, 由于闪络以及其他方面的异常现象等。这类故障在变压器故障中占有很大的比例。因此, 必须定期对变压器进行冲击保护试验, 检测变压器抗励磁涌流的强度。
 
( 3) 由于使用不当造成的变压器绝缘老化的速度加快。一般变压器的平均寿命只有17.8 年, 大大低于预期为35~40 年的寿命。
 
( 4) 遭雷击造成过电压。
 
( 5) 过负荷。过负荷是指变压器长期处于超过铭牌功率工作状态下的变压器。过负荷经常会发生在发电厂持续缓慢提升负荷的情况下, 冷却装置运行不正常, 变压器内部故障等等, 最终造成变压器超负荷运行。由此产生过高的温度则会导致绝缘的过早老化, 当变压器的绝缘纸板老化后, 纸强度降低。因此, 外部故障的冲击力就可能导致绝缘破损, 进而发生故障。
 
( 6) 受潮: 如有洪水、管道泄漏、顶盖渗漏、水分沿套管或配件侵入油箱以及绝缘油中存在水分等。
 
( 7) 没有进行正确的维护。
 
2 变压器运行中常见故障分析及处理措施
( 1) 绕组的主绝缘和匝间绝缘故障。变压器绕组的主绝缘和匝间绝缘是容易发生故障的部位。主要原因是: 由于长期过负荷运行、或散热条件差、或使用年限长, 使变压器绕组绝缘老化脆裂, 抗电强度大大降低;变压器多次受到短路冲击, 使绕组受力变形, 隐藏着绝缘缺陷, 一旦遇有电压波动就有可能将绝缘击穿; 变压器油中进水使绝缘强度大大降低而不能承受允许的电压, 造成绝缘击穿; 在高压绕组加强段处或低压绕组部位, 由于绝缘膨胀, 使油道阻塞, 影响了散热, 使绕组绝缘由于过热而老化, 发生击穿短路; 由于防雷设施不完善, 在大气过电压作用下, 发生绝缘击穿。
 
( 2) 变压器套管故障。主要是套管闪络和爆炸, 变压器高压侧一般使用电容套管, 由于套管瓷质不良或者有沙眼和裂纹, 套管密封不严, 有漏油现象; 套管积垢太多等都有可能造成闪络和爆炸。
 
( 3) 铁心绝缘故障。变压器铁芯由硅钢片叠装而成, 硅钢片之间有绝缘漆膜。由于硅钢片紧固不好, 使漆膜破坏产生涡流而发生局部过热。同理, 夹紧铁心的穿心螺丝、圧铁等部件, 若绝缘损坏也会发生过热现象。此外, 若变压器内残留有铁屑或焊渣, 使铁芯两点或多点接地, 都会造成铁芯故障。
 
( 4) 分接开关故障。变压器分接开关是变压器常见故障之一。由于开关长时间靠压力接触, 会出现弹簧压力不足, 使开关连接部分的有效接触面积减小, 以及接触部分镀银层磨损脱落, 引起分接开关在运行中发热损坏。分接开关接触不良, 经受不住短路电流的冲击而造成分接开关烧坏而发生故障; 在有载调压的变压器, 分接开关的油箱与变压器油箱一般是互不相通的。若分接开关油箱发生严重缺油, 则分接开关在切换中会发生短路故障, 使分接开关烧坏。
 
( 5) 瓦斯保护故障。瓦斯保护是变压器的主保护, 轻瓦斯作用于信号, 重瓦斯作用于跳闸。下面分析瓦斯保护动作的原因及处理办法: 第一, 轻瓦斯保护动作后发出信号。其原因是: 变压器内部有轻微故障; 变压器内部存在空气; 二次回路故障等。运行人员应立即检查, 如未发现异常现象, 应进行气体取样分析。第二, 瓦斯保护动作跳闸时, 可能变压器内部产生严重故障, 引起油分解出大量气体, 也可能二次回路故障等。出现瓦斯保护动作跳闸, 应先投备用变, 然后进行外部检查。检查油枕防爆门, 各焊接缝是否裂开, 变压器外壳是否变形; 最后检查气体的可燃性。
 
( 6) 变压器自动跳闸的处理。当变压器各侧断路器自动跳闸后, 首先将跳闸断路器的控制开关操作至跳闸后的位置, 并迅速投入备用变压器, 调整运行方式和负荷分配, 维持运行系统和设备处于正常状态。再检查保护动作情况, 进行外部检查。经检查不是内部故障而是由于外部故障( 穿越性故障) 或人员误动作等引起的, 则可不经内部检查即可投入送电。如属差动、重瓦斯、速断等主保护动作, 应对该保护范围内的设备进行全部检查。在未查清原因前, 禁止将变压器投入运行。
 
( 7) 变压器着火也是一种危险事故。由于变压器套管的破损或闪络,使油在油枕油压的作用下流出, 并在变压器顶盖上燃烧; 变压器内部发生故障, 使油燃烧并使外壳破裂等。因变压器有许多可燃物质, 不及时处理可能引起爆炸或使火灾扩大。发生这类事故时, 变压器保护应动作使断路器断开。若因故断路器未断开, 应手动立即断开断路器, 拉开可能通向变压器电源的隔离开关, 并迅速投入备用变, 恢复供电, 停止冷却设备的运行, 进行灭火。变压器灭火时, 最好用泡沫式灭火器或者干粉灭火器, 必要时可用沙子灭火。
 
3 变压器的正常运行的巡视
为了解变压器的运行状态, 应定期检查变压器的运行情况, 以便在变压器有异常情况发生时能及早发现、及时处理。变压器的巡视检查项目有: 第一, 检查变压器声音是否正常。第二, 检查油枕和充油套管的油位、油色是否正常, 各部位有无渗漏油现象。第三, 变压器的上层油温是否正常。变压器冷却方式不同, 其上层油温也不同, 但上层油温不应超过规定值。运行人员巡视检查时, 除应注意上层油温不超过规定值以外, 还应根据当时的负荷情况、环境温度及冷却装置投入情况, 与以往数据进行比较, 以判明温度升高的原因。第四, 检查变压器套管是否清洁, 有无破损、裂纹和放电痕迹。第五, 检查引线接头接触是否良好。各引线接头应无变色、无过热、发红等现象。接头接触处的示温片应无溶化现象。用红外线测温仪测试, 接触处温度不得超过70 ℃。第六, 检查呼吸器是否正常完好, 硅胶是否有变色现象, 如果硅胶失效应及时更换。第七, 防爆隔膜应完好无破裂。第八, 变压器的冷却器应运行正常。投入的冷却器数目是否正确, 油泵和风扇运行是否正常, 有无异音, 油流指示器是否指示在“流动位置”。第九, 检查气体继电器。第十, 检查变压器铁芯接地线和外壳接地线, 接地应良好, 无断线。第十一, 检查调压分接头位置是否正确。第十二, 天气有变化时, 应重点进行特殊检查。大风时, 检查引线有无剧烈摆动, 变压器顶盖、套管引线处应无杂物; 大雪天, 各部触点在落雪后, 不应立即融化或有放电现象; 大雾天,各部有无火花放电现象等。 

4 变压器日常的维护工作
变压器日常的维护工作包括: 第一, 检查套管和磁裙的清洁程度并及时清理, 保持磁套管及绝缘子的清洁, 防止发生闪络。第二, 冷却装置运行时, 应检查冷却器进、出油管的蝶阀在开启位置; 散热器进风通畅,入口干净无杂物; 检查潜油泵转向正确, 运行中无异音及明显振动; 风扇运转正常; 冷却器控制箱内分路电源自动开关闭合良好, 无振动及异常声音; 冷却器无渗漏油现象。第三, 保证电气连接的紧固可靠。第四, 定期检查分接开关, 并检查触头的紧固、灼伤、疤痕、转动灵活性及接触的定位。第五, 每3 年应对变压器的线圈、套管以及避雷器进行检测。第六, 每年检查避雷器接地的可靠性, 避雷器接地必须可靠, 而引线应尽可能短。旱季应检测接地电阻, 其值不应超过5 Ω。第七, 更换呼吸器的干燥剂和油浴用油。第八, 定期试验消防设施。
 
5 变压器工作中需要注意的问题
( 1) 渗漏处理。变压器的渗漏分油侧渗漏和气侧渗漏两种, 通常所说的渗漏油, 是油箱( 或套管) 内的油向大气中渗漏, 属于油侧渗漏; 大气向油箱或套管内渗漏, 则为气侧渗漏。凡是充有油的部分, 均可能发生油侧渗漏。油侧渗漏的特征是渗漏处出现残油痕迹, 污染变压器的外观形象。当渗漏处的油压大于油溶液( 污染了的油) 的渗透压时, 大气中的水分、气体和其他杂质不能侵入油箱内部; 当渗漏处的油压小于油溶液的渗透压时, 发生分子间的互相渗透, 大气中的水分、气体和其他杂质便可能侵入油箱内部。气侧渗漏发生在变压器内存有气体的部位, 如高压套管穿缆铜管的上端、安全气道的油面以上部分, 带油运输变压器顶部留的气腔, 储油柜油室的上部, 强油循环的负压区, 套管储油柜的上部。气侧渗漏的特点是由于存留气体的热胀冷缩, 在渗漏处进行“呼吸”。在吸进大气时把大气中的水分、气体和其他杂质吸进油箱或套管的内部。特别是雨雪天气, 一次就可能吸进许多水分, 引起绝缘局部受潮, 使绝缘的耐压强度下降, 导致击穿放电。由于气体渗漏不像渗漏油那样留有痕迹, 肉眼不能发现, 所以引发事故的几率很大, 后果特别严重。变压器或套管的油纸绝缘, 是被密封后与大气隔离的绝缘。由于“它的电气强度和大气条件无关”, 所以属于“内部绝缘”。当发生气侧渗漏或油侧渗漏, 其电气强度和大气条件有关。因此变压器或套管的渗漏, 是对内部绝缘的一种破坏。渗漏引起的绝缘强度下降, 甚至丧失, 则是对内部绝缘更为严重的破坏。
 
( 2) 胶袋密封油枕的维护。为了减缓变压器油的氧化, 在油枕的油面上放置一个隔膜或胶囊( 又称胶袋) , 胶囊的上口与大气相通, 而使油枕的油面与大气完全隔离, 胶囊的体积随油温的变化增大或减小。在油枕加油时, 应注意尽量将胶囊外面与油枕内壁间的空气排尽, 否则, 会造成假油位及瓦斯继电器动作, 故应全密封加油。油枕加油时, 应注意油量及进油速度要适当, 防止油速太快, 油量过多时, 可能造成防爆管喷油, 压力释放器发信号或喷油。
 
( 3) 净油器的运行维护。在变压器箱壳的上部和下部, 各有一个法兰接口, 在此两法兰接口之间装有一个盛满硅胶或活性氧化铝的金属桶。其维护工作主要有: 变压器运行时, 检查净油器上下阀门在开启位置, 保持油在其间的通畅流动。净油器内的硅胶较长时间使用后应进行更换,换上合格的硅胶。净油器投入运行时, 先打开下部阀门, 使油充满净油器, 并打开净油器上部排气小阀, 使其内空气排出, 当小阀门溢油时, 即可关闭小阀门, 然后打开净油器上阀门。
 
6 结语
变压器能否正常运行不但取决于变压器结构设计和制造工艺, 而且与日常的运行、维护管理等方面有很大关系, 变压器故障对电网系统的运行危害极大, 为避免事故的发生, 应加强日常运行巡视管理和制订有效的维护措施, 以保证变压器的安全稳定运行。

关键字:变压器  运行维护  故障处理 编辑:冰封 引用地址:基于变压器的运行维护和故障处理方案

上一篇:500kV变压器的运行维护
下一篇:环形变压器使用指南

推荐阅读最新更新时间:2023-10-18 15:56

变压器过励磁
变压器过励磁是设计、制造与运行中常遇到的现象。 我们首先谈一下变压器过励磁是怎样产生的? 以及它对变压器有什么危害? 产生过励磁的原因 : a. 铁心结构上原因,目前都采用冷轧晶粒取向硅钢片作为铁心导磁材料,铁心为全斜45接缝的叠片方式,接缝分两处错开并有一搭接距离。在搭接处的截面虽增大了倍,但有效厚度却少了,故接缝处实际截面还是小了,故在接缝处有过励磁,磁通密度大了倍。因此目前在发展阶梯式接缝,即接缝在六处错开,这样,有效厚度可保持,实际面积是增加了=1.18。作为过渡措施,接缝在三处错开,这是因阶梯式接缝需改变切线的软件。 b.恒磁通调压的变压器带有负载时,为保持不同负载下的输出电压
[模拟电子]
教你:变压器改成隔离电源
改做隔离的目的是在维修时避免操作失误导致触电危险,虽有隔离但也不是说完全不会触电,如果同时触碰两根输出线时也会触电(如果是市电的话,接触火线就会触电),有隔离的情况下单独接触单根线就不会出现触电现象。 好了 !我们开始吧!! 首先找到两个功率,大小一样的 变压器,如果你没有,需要购买的话,个人建议直接购买成品隔离就可以了 !此方案适合有闲置变压器的朋友制作! 一样的大小 这里说明一下 ,这里的 线圈骨架是独立的,这样的骨架最容易改造!在你改造前请看好,如果不是这样的架构,你就别改了!! 把硅钢片全部卸下! 两个变压器 都拆 我
[电源管理]
教你:<font color='red'>变压器</font>改成隔离电源
用隔离变压器降低UPS输出零地电压
摘要:介绍了用隔离变压器降低UPS零地电压的方法,解决了UPS上电开机前零地电压低,而开机后零地电压升高的现象。 关键词:不间断电源;隔离变压器;零地电压 用户安装的某些负载(例如HP小型机、IBM服务器等),会对UPS输出零地电压有较高的要求,一般情况下要求 1V。但在实际的工程安装和开机调试时发现,UPS没开机时测量输出零地电压还满足要求,开机上电后测量UPS的输出零地电压会上升,有可能出现零地电压超出了要求的范围。其原因大致有以下两点: 1)用户本身的配电系统达不到要求,当零线排容量偏小时,零线上的电流会造成零线相对地线有一定的电压差,这样,在UPS的输入处,零地电压就会升高而达不到设备要求; 2)UPS是开关电源,其输入和
[电源管理]
1KW纯正弦波逆变电源DCDC变压器制作
  这是一款保护功能齐全的正弦波逆变电源模块,采用 DC/AC/工频变压器 两级功率变换架构,其中全桥式DC/AC电路将24V(另有12V、48V)直流电压逆变成AC(24*直流电压利用率/1.414)V交流电,再由工频变压器将逆变之后的交流电变换成AC220V 50Hz的标准交流电,该模块的DC/AC部分采用HT1112芯片控制,模块采用输入输出隔离的方案.   一、a)逆变电源模块DC/AC部分   开关管立着的:             开关管在板子底下的:        散热片尺寸:277mm、120mm   注:板子长230mm、宽120mm. 全桥每个开关部分
[电源管理]
1KW纯正弦波逆变电源DCDC<font color='red'>变压器</font>制作
怎样用万用表测量pt100热电阻 浅谈热电阻故障处理方法
  本文主要是关于pt100热电阻的相关介绍,并着重对pt100热电阻的万用表测量进行了详尽的阐述。   pt100热电阻   Pt100是铂热电阻,它的阻值跟温度的变化成正比。PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。      典型应用   隔离变送器是一种将热电阻信号按温度高低隔离转换成与温度成线性标准信号的混合集成电路。该电路在同一芯片上集成了一组多路高隔离的DC/DC电源,几个高性能的信号隔离器和热电阻线性化、长线补偿、干扰抑制电路,特别适用
[测试测量]
怎样用万用表测量pt100热电阻 浅谈热电阻<font color='red'>故障</font><font color='red'>处理</font>方法
最清晰透彻之RCC 电源变压器设计方法
去年,出于一次偶然,写了三个变压器设计的文章,分别是 反激 , 正激 , 半桥 。没想到反响还不错,尤其以反激变压器那个文章为甚。现在,已经没做电源 RD 了,比原来空闲,那天有个初学者问我,说 RCC 电源变压器算的不准,原来是套用我写的那个反激式的算法,因此我想到,应该再写一点 RCC 电源变压器的设计方法,以使那些电源新手更快的掌握 RCC电源。毕竟 RCC 电源和反激电源还是有些不同的。 RCC 电路根据功率管不同,分为两种,一种是用 三极管 制作,另一种是用 MOS 管制做,电路稍有不同,但原理差不太多。我们知道,三极管是一个 电流 控制的电流源,即若其基极电流为 Ib,则其极电极电流即
[电源管理]
最清晰透彻之RCC 电源<font color='red'>变压器</font>设计方法
单端正激变压器的设计
开关电源变压器是高频开关电源的核心元件。其作用为:磁能转换、电压变换和绝缘隔离。开关变压器性能的好坏不仅影响变压器本身的发热和效率,而且还会影响到高频开关电源的技术性能和可靠性。高频开关变压器的设计主要包括两部分:绕组设计及磁芯设计。本文将对应用在高频下的单端正激变压器的设计方法及磁芯的选择给出较为详细的论述。 1 单端正激变压器原理 单端正激变压器的原理图如图1所示。 单端正激变压器又称"buck"转换器。因其在原边绕组接通电源Vi的同时把能量传递到输出端而得名。正激式变压器的转换功率通常在50~500 W之间。输出电压Vo由匝比n、占空比D和输入电压Vi确定。 当PWM控制器输出正脉冲,功率
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved