变压器中磁性元件的损耗问题详解

最新更新时间:2011-10-27来源: chinaaet关键字:磁芯  磁性元件  开关电源  漏感 手机看文章 扫描二维码
随时随地手机看文章
  磁性元件一般就是指电感与变压器,这里我们这种讨论初次级隔离的变压器,因为这种变压器在开关电源中应用最为广泛。

  变压器的作用大致是提供初次级的电气隔离,使输出电压或升或降,传送能量;变压器设计的好坏直接关系到整个电源系统的安规,EMC,效率,温升,输出的电气性能参数,寿命,可靠性,甚至会导致系统的崩溃。

  升压的做过,但经验不多,说说个人的理解,不一定对,权作参考与讨论之用。

  升压变压器的难点,楼上已经指出来了,因为绕组的圈数太多,漏感与分布电容很难两全其美;这个时候我觉得应该从以下几个方面着手:

  1、在选择变压器的时候,如果结构尺寸允许的话,我们尽量选择高长型(立式)或窄长(卧式)型的,因为这种变压器单层绕线圈数多,可以有效降低绕线的层数,增加初次级的耦合,减小层间电容。

  2、优化绕线顺序,使初次级能增减耦合面积;曾经用过这种绕法:1/3次级--1/2初级--1/3次级--1/2初级--1/3次级,结果表明此种绕法漏感可以小很多。

  当然这种变压器绕制工艺稍显复杂,成本稍高,但还是可以接受。

  3、层间电容大家都知道,每层之间加黄胶带,便可减少层间电容。

  当然这些措施都是在考虑安规与EMC的情况下,做出的改进;对于升压电源,漏感与层间电容如果处理不好很容易引起振荡,使电源的EMC不好过,效率不高,有时会莫名其妙的炸MOS管(我实际碰到过的情况)。

  我们知道变压器的损耗分为铁损与铜损,先来说说铁损吧。

  变压器的铁损包括三个方面:

  一是磁滞损耗,当交流电流通过变压器时,通过变压器磁芯的磁力线其方向和大小随之变化,使得磁芯内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗。

  二是涡流损耗,当变压器工作时。磁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使磁芯发热,消耗能量,这种损耗称为涡流损耗。

  三是剩余损耗,在磁芯磁化或反磁化的过程中,磁化状态并不是随磁化强度变化而立即变化,有个滞后时间,滞后效应便是引起剩余损耗的原因。

  从铁损包含的三个个方面的定义上看,只要控制磁力线的大小便可降低磁滞损耗,减少磁芯与磁力线垂直的面积可以减少涡流损耗。

  赵老师在《开关电源中磁性元器件》一书中指出:

  


 

  由上面的话可以看出,在磁芯材质与形状,体积等都确定的情况下,变压器的铁损与变压器的工作频率以及磁感应强度摆幅deltB成正比。

  磁滞在低场下可以不予考虑,涡流在低频下也可忽略,剩下的就是剩余损耗。在磁感应强度较高或工作频率较高时,各种损耗互相影响难于分开。故在涉及磁损耗大小时,应注明工作频率f以及对应的Bm值。但在低频弱场下,可用三者的代数和表示:tanδm= tanδh+tanδf+tanδr。式中tanδh tanδf tanδr分别为:磁滞损耗角正切,涡流损耗角正切,剩余损耗角正切。各种损耗随频率的变化关系如图。

  

 

  由图可见,剩余损耗和B的大小无关,但随频率增大而增大。而磁滞损耗随B的增加增大,涡流损耗则和频率成线性变化。了解了这些就可知:在正激和桥式电源中,磁芯损耗着重考虑涡流损耗。在反激变压器和储能电感中,既要考虑涡流损耗又要考虑磁滞损耗,尤其是DCM方式工作的电源,磁滞损耗是第一位的。所以可以确定,做电源时第一点就是根据电源的工作频率选取相应的磁芯材料。

  下面我们开始来讨论下变压器的铜损。

  变压器的铜损即变压器绕组的损耗,包含直流损耗与交流损耗。

  直流损耗主要是因为绕变压器的铜漆包线,对通过它的电流有一定的阻抗(Rdc)而引起的损耗。此电流指的是各个绕组电流波形的有效值。直流损耗跟电流大小的平方成正比。

  相对来说,交流损耗就复杂得多,包含绕组的趋肤效应,临近效应引起的损耗,同样还包括各次谐波引起的损耗。

  先说直流阻抗,形成原因上面说了。下面我们来分析怎样减少直流损耗

  首先,给出直流损耗计算公式:Pdc=(Irms)^2*Rdc

  由上面的公式可见,对于电流有效值一定的情况下,只要降低绕组的直流等效电阻就可以降低绕组的直流损耗。

  我们知道绕组的电阻与材质,长度,截面积甚至温度(关系很小)等有关,那么我们就可以采用如下方法来降低绕组的直流损耗:

  1、采用电阻率小的导体来绕制变压器,一般采用铜漆包线,尽量不用铜包铝漆包线或铝漆包线

  2、在变压器窗口面积允许的情况下,尽量用大一点的等效截面积的漆包线(单根线不要超出穿透深度,后面会分析)

  3、适当减少绕组的匝数(会增加铁损),慎用

  先来看看集肤效应的定义:

  集肤效应又叫趋肤效应,是指导体通过交流电流时,在导体截面中,存在边缘部分电流密度大,中心部分电流密度小的现象。

  肌肤效应产生的原理比较复杂,简单的表述为:

  

 

  如上图,设流过导体的电流为i,方向如图。根据右手法则, 则要产生m.m.f的磁场,并垂直电流方向,如图的八个小圆圈就是进入与离开道题的磁力线。根据法拉第电磁感应,磁力线通过导体会产生涡流,方向如图中8个小圆圈周围的大圆圈方向所示。

  由图可知,涡流的方向加强了导体边缘电流,抵消了导体中心的电流,这便是集肤效应产生的原理。

  关于集肤效应,赵修科老师在《开关电源中的磁性元件》一书中有过详细的论述

  

 

  

 

  在这里再引入一个名词:穿透深度

  定义:当导通流过高频电流时,由于趋肤效应导致电流从导通表层流过,此表层的厚度称为穿透深度或趋肤深度,用“Δ”表示

  需要说明的是穿透深度指的是导体的半径。

  穿透深度跟工作温度,导体的电阻率,导体的相对磁导率以及频率等因素有关

  其计算公式为

  Δ=65.5/√f(mm) 20℃

  Δ=76.5/√f(mm) 100℃

  公式我就不推导了,有兴趣可以参阅相关资料。

  由上面的公式不难看出,工作频率越高,导线的穿透深度就越低,所以广大工程师在设计变压器的时候,一定要考虑频率对导线的穿透深度影响。

  电流减少,但电流的方向还是不变的,所以产生的磁场方向还是不变的

  这里只是解释了集肤效应产生的原理,所以没有提频率的影响,我是这样理解的:频率越高,那么电流变化率越大,就意味着产生磁场强度越强,也就是说产生的涡流对中心的电流阻碍作用就越大,所以就有了一个穿透深度的问题

  下面来看临近效应

  定义:

  当两个相邻导体流过方向相反的电流时,相互之间会产生磁动势,而磁动势在对方的导体中会产生涡流,此涡流导致导体相互靠近的地方电流加强,而相互远离的地方电流减弱。

  

 

  由上图可知,临近效应导致导体有部分流过的电流小甚至不流过电流,而有一部分流过的电流则很大,这个会引起很大的热损耗,在导线较粗的情况下尤为明显。

  实践证明,临近效应跟绕线的层数密切相关,临近效应随绕线层数的增加呈指数规律增加

  关于临近效应的产生原理,赵修科老师有非常详细与精彩的分析

  

 

  

 

  磁性元件的设计中存在太多的不确定因素,比如同样的绕制工艺要求,不同厂家做出来的会有小小的差异,还有磁芯材质的差异,因为不是每个工厂都用得起TDK的磁芯,所以,我认为设计是需要丰富的经验加上实际的调试来确定最终参数。

  我一般都是线大概计算下参数,然后在实际中调试,最终确定的参数主要是看调试的效果。

关键字:磁芯  磁性元件  开关电源  漏感 编辑:探路者 引用地址:变压器中磁性元件的损耗问题详解

上一篇:基于瑞萨H8/3687的小型发电机逆变电源的研制
下一篇:继电器保护电路详细分析

推荐阅读最新更新时间:2023-10-18 15:58

基于开关电源的高速模数转换器供电设计
系统设计工程师常被要求降低总体功耗,以减少对我们环境的影响,同时降低投资和运营成本。他们还需要提高电路密度,以便实现外形尺寸更小的电子系统,并且能在更严苛的环境下工作。遗憾的是,若将高功耗解决方案整合到这些系统中,会带来极大的散热问题,而使得其他目标也无法实现。   传统上,ADC制造商一般推荐采用线性稳压器为转换器提供干净的电源。线性稳压器能够抑制系统电源中经常出现的低频噪声。此外,铁氧体磁珠和去耦电容相结合的方法可用来减少高频噪声。这种方法虽然有效,但却限制了效率,特别是在线性稳压器必须从高出其输出电压几伏的电源轨进行降压调节的系统中。低压差稳压器(LDO)的效率通常为30%~50%,而DC/DC稳压器的效率则高达90%。
[电源管理]
基于<font color='red'>开关电源</font>的高速模数转换器供电设计
开关电源假负载接法
开关电源在负载短路时会造成输出电压降低,同样在负载开路或空载时输出电压会升高。在检修中一般采用假负载取代法,以区分是电源部分有故障还是负载电路有故障。关于假负载的选取,一般选取40W或60W的灯泡作假负载(大屏幕彩色电视机可选用100W以上的灯泡作假负载),优点是直观方便,根据灯泡是否发光和发光的亮度可知电源是否有电压输出及输出电压的高低。但缺点也是显而易见的,例如60W的灯泡其热态电阻为500Ω,而冷态电阻却只有50Ω左右。根据下表可以看出:假设电源主电压输出为100V,当用60W灯泡作假负载时,电源工作时的电流为200mA,但启动时的主负载电流却达到了2A,是正常工作电流的10倍,因此,用灯泡作假负载,易使电源启动困难,由于灯
[电源管理]
车载电源系统开关电源的设计
目前世界各国正在研究48VDC汽车用电源系统,欧共体计划从2008年开始采用48VDC电源系统。如何在48VDC电源系统下兼容12VDC电子设备成为了一个课题。通过线性稳压电源实现48VDC/12VDC的转换会产生很大的功率损耗,缺点明显。 本文提出了一种具有过载和短路保护的车载电源系统的开关电源设计方案。该方案采用单端反激式结构实现48VDC/12VDC的转换,输出电压稳定,波纹小,不间断,性能可靠且电源损耗小。 UC3842的保护电路设计 1 UC3842的典型应用 ??? UC3842是高性能的单端输出式电流控制型脉宽调制(PWM)芯片,其典型应用电路如图1所示。 图1 UC3842典型应
[电源管理]
电流控制的开关电源系统
电流型控制的开关电源系统有三种控制方式:即峰值电流控制、平均电流控制和滞环电流控制。图1所示即为电流型控制的开关电源系统结构框图。它包含有两个负反馈控制环:内环是电流环,外环是电压环。电压控制器的输出控制信号ue作为电流环的给定信号;电流环由电流检测(如直流电流互感器)、处理(I-U转换)和电流控制器等组成;被检测的电流可以是电感电流iL,也可以是主开关管的电流iv,通过电流检测电阻Ri,将检测到的电流(iL或iv)转换成电压 iLRi或ivRi,然后再与电流给定信号ue进行比较,并将得到的误差信号经过电流控制器放大之后,通过PWM脉冲调制器进行调制,产生出占空比d去控制开关转换器的主开关管V的通/断。为了介绍简单,本文只介绍连续
[模拟电子]
电流控制的<font color='red'>开关电源</font>系统
开关电源原理与设计(连载55)
      2-1-1-6.各种波形电源变压器初级线圈匝数的计算       (2-18)式虽然是用于计算双激式开关电源变压器初级线圈N1绕组匝数的公式,但只需把式中的某个别参数稍微进行变换或修改,同样可以用于计算其它波形电源变压器初级线圈匝数的公式。这里,我们先来推导用于计算正弦波电源变压器初级线圈匝数的公式。方法如图2-8所示,先求正弦电压的半周平均值Ua,因为正弦电压的半周平均值Ua正好等于方波电压的幅值E,因此,只需把正弦电压的半周平均值代入(2-18)式,即可得到计算正弦波电源变压器初级线圈匝数的公式。       但正弦电压的半周平均值Ua一般很少人使用,因此,还需要把正弦电压的半周平均值Ua再转换成正弦
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载55)
基于DS80C320的通信电源监控系统设计
  近年来。通信行业发展异常迅速,电源系统是通信的动力中心,通信电源系统的工作稳定性直接关系到通信机房及基站的正常运行。通信电源是通信网络的“心脏”,通信电源系统稳定、可靠的运行直接关系到通信的稳定性及可靠性。目前大型通信电源的供电方式多采用集中供电的方式,一旦发生供电故障,将直接引起整个通信系统的瘫痪。、 通信电源的传统维护方式主要依靠人工看守,工作量大,效率低下,造成设备发生故障而没有及时进行处理而产生的重大通信阻断时有发生。因此对在网运行通信电源设备实现远程实时监测,有利于及时发现电源故障,减少人为因素,对保证供电系统稳定、可靠运行显得十分重要。‘   目前,通信电源系统广泛使用高频 开关电源 系统设备,其智能化程度高。在运
[电源管理]
基于DS80C320的通信电源监控系统设计
一种车载开关电源的设计
0 引言 由于开关电源技术的不断发展,开关电源被应用到越来越广泛的领域中。不但要求电源输出电压种类多元化,输入电压也多种多样,尤其直流输入电压范围比较广泛,本文设计了一种应用在列车上的电源。 要求输入电压为DC24V±20%V,输出电压为DC110V,电流为3A。输入电压由外部电源提供,同时具有外接蓄电池功能。当 (外部DC24V)输入正常时,由 向电源供电,同时 向蓄电池充电,并提供LED 指示,当 输入欠压(≤21V)、过压(≥30V)时由 (蓄电池)向电源供电并提供LED 指示。当蓄电池≤21V时切换到外部24V供电,并提供LED 指示。供电电路原理图如图1所示。 图1供电电路原理图  当外部电压 高于 (30V)时
[电源管理]
一种车载<font color='red'>开关电源</font>的设计
LM5021开关电源控制器简介
  LM5021开关电源控制器是一款大范围(85-265V)高压输人开关电源控制器。内含软启动电路、振荡电路、软驱动电路、最大占空比限制(80%)电路、轻载比较器、过流比较器、重载监测过负载工作模式切换电路。图I是内部电路框图。LM5021采用SOP-8或DIP-8两种封装。附表是LM5021的引脚功能。   需说明的是,从外部输人时钟信号时,其时钟信号电压的幅值要大于3.8V,此时⑦脚外接电阻去掉。LM5021的输出电压由开关变压器次级绕组匝数及输出端对地所接分压器和基准电压设定所决定。其额定输出功率为24W,负载调整率为±120mV。图2是用它构成的一款12V便携式充电器电路。
[电源管理]
LM5021<font color='red'>开关电源</font>控制器简介
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved