背景
大多数大型嵌入式系统都由 48V 输入供电,该 48V 输入通过背板发送到系统内每个 PC 板,这种供电方式常常称为分布式电源系统。该 48V 输入通过一个隔离式中间总线转换器 (IBC) 降至一个较低的电压,通常在 5V 至 12V范围。然后,这种中间总线输出电压需要再次降低,以用于分支电路和电路板上的 IC,这些分支电路和 IC 需要数十 mA 至数十 A电流和 0.8V 及更高的电压。这些完成再次降压的器件称为负载点 (POL) 稳压器。
分布式电源系统中一般包括微处理器和数字信号处理器 (DSP),这两类器件都需要内核电源和输入/输出 (I/O) 电源,在启动和停机时,这些电源必须排序。设计师必须考虑加电和断电时内核及 I/O 电压的相对大小及电压的时序,以符合制造商的性能规范。如果没有正确的电源排序,就会发生闭锁或过度吸收电流,这有可能导致微处理器 I/O 端口或支持器件 (如存储器、可编程逻辑器件 ─ PLD、现场可编程门阵列 ─ FPGA、数据转换器 … 等等) I/O 端口的损坏。为了确保内核电压正确偏置后再驱动 I/O 负载,跟踪内核电源电压和 I/O 电源电压是必要的。
某些处理器要求 I/O 电压先于内核电压上升,而有些 DSP 则要求内核电压先于 I/O 电压上升。断电排序也需要。有多达 7 个输入电压轨需要排序的专用集成电路 (ASIC) 是很普遍。理想的排序允许系统中所有轨任意排序,允许任何轨的升降取决于其他轨。在这些轨之间建立一种依赖关系,这样,如果在顺序加电时,其中一个轨没有上升到满电压,那么加电过程就停止。此外,在 FPGA、PLD、DSP和微处理器中,一般将二极管作为静电放电 (ESD) 组件,放置在内核和 I/O 电源之间。如果输入电压未加控制,或如果电源无法给预偏置负载供电,那么加电或断电时,这些内部二极管可能会损坏。
在预偏置负载情况下,负载上已经加上了一个电压,该电压可能是稳定状态的电压,也可能是从加电或断电起开始转变的电压。提到可以预偏置的 IC,ASIC 是一个很好的例子。一般情况下,ASIC 会需要多个电压轨工作在例如 1.0V、1.1V、1.2V、1.8V、2.5V 和 3.3V。在 ASIC 内部,这些轨之间都会有一个二极管,通过不允许电压高于二极管两端的压差来实现内部保护。加电或断电时,可能存在一种情况 ── ASIC 内两个轨之间的电压比二极管压降高得多,从而引起很大的电流流过二极管,并导致二极管出故障。这种大电流可能回流到 DC/DC 转换器的同步 MOSFET 中,而且这种情况通常在加电或断电时发生。采用一个在接通或断开时不允许负电流流经输出电感器的 DC/DC 转换器,就可以防止这个问题,这种方法要求 DC/DC 转换器在加电或断电时以突发模式 (Burst Mode®) 或断续传导模式工作。
解决老问题的新方法
凌力尔特公司的 DC/DC 转换器可以安全地给预偏置负载供电,最近推出的三输出、多相同步 DC/DC 控制器 LTC3853 就是这类 DC/DC 转换器之一。LTC3853 是一种高效率、三输出同步降压型开关稳压控制器,具一致或比例制跟踪能力。通过准确的运行门限和两个电源良好输出,电源排序非常容易实现。其 4.5V 至 24V (最大值为 28V) 的输入范围涵盖了种类繁多的应用,其中包括大多数中间总线电压。强大的内置栅极驱动器给所有 N 沟道 MOSFET 级供电,而且在一个通道的输出电压范围为 0.8V 至 13.5V、另两个通道的输出电压范围为 0.8V 至 5.5V 时,每相可产生超过 20A 的输出电流。恒定频率架构允许 250kHz 至 750kHz 的可选固定或可同步锁相环 (PLL) 频率。
LTC3853 配置为 3 个单独的输出,还可以配置为 2 + 1 型控制器,在这种情况下,可将通道 1 和通道 2 连起来使两个输出并联,通道 3 则是一个独立的输出。通过使 3 个输出级以 120° 相差运行,可最大限度地降低功耗和电源噪声。当配置为 2 + 1 型控制器时,通道 1 和通道 2 相位相差 180°,以在有一个大电流输出和一个小电流输出时,保持输入电流得到最佳平衡。
以 2 + 1 模式运行的双输出转换器
图 1 显示了在 6.5V 至 14V 输入范围内工作的双输出转换器原理图。通道 1 和通道 2 馈送相同的 1.2V 输出,而通道 3 控制第二个 3.3V 输出。这种 2 + 1 型配置仅需要一个 RUN 引脚 (RUN1) 来启动通道 1 和通道 2。通道 2 的反馈误差放大器被禁止,两个通道共用通道 1 的反馈分压器。电流检测比较器的封装后微调可提供通道 1 和通道 2 之间的卓越均流。图 2 中对这一点进行了说明,其中显示了 ±25% 负载阶跃时每个通道的电感器电流,所产生的输出电压瞬态约为 63mVpp,不到 ±3%。
图 1:LTC3853 的高效率 1.2V/30A、3.3V/5A 双输出原理图
图 2:LTC3853 电流检测比较器的封装后微调可在并联时提供通道 1 和通道 2 之间的卓越均流,甚至在 75% 至 100% 负载阶跃时也不例外。
软启动或跟踪
LTC3853 的输出电压可以配置为可编程软启动,或可以配置为跟踪另一个通道的输出电压,或跟踪一个外部电源电压,这时 3 个输出电压中的任何一个电压都是独立的。当输出电压配置为软启动时,需要一个电容器连到其 TK/SS 引脚。这个 TK/SS 引脚允许用户设定,其输出如何相对于另一个输出电压斜坡上升或下降。通过这些引脚,输出可以设置为一致或成比例地跟踪该器件自己的电压或另一个电源的输出。这些斜坡曲线如以下图 3 所示。跟踪另一个输出电压时,去掉了软启动电容器。为了实现比例制跟踪,用于输出电压反馈信号的电阻分压器网络连到了相应的 TK/SS 引脚,以跟踪该输出。为了实现一致跟踪,将一个额外的电阻分压器连接到 VOUT1,然后将其中点连接到完成比例制跟踪任务的从属通道的 TK/SS 引脚。这个分压器的分压比应该与从属通道反馈分压器的分压比相同。
不过,至于应该设定哪一种模式,也是个问题。尽管两种模式哪一种都满足大多数实际应用的需求,但是还是需要进行一些权衡。比例制跟踪模式省去了一对电阻器,而一致跟踪模式提供更好的输出稳压。
图 2:LTC3853 输出电压跟踪曲线
工作模式
在轻负载情况下,LTC3853 可以设定为以突发、脉冲跳跃或连续这 3 种模式之一工作。在突发模式中,利用开关把一至数个突发脉冲接入电路,以补充输出电容器储存的电荷,接下来是一个长长的休眠期,这时由输出电容器提供负载电流,因此突发模式工作可提供最高的效率。强制连续模式从无负载到满负载提供固定频率工作,从而提供较低的输出电压纹波,但代价是较低的轻负载效率。脉冲跳跃模式的工作特点是,在需要时断开同步开关,以防止电感器电流反向。脉冲跳跃模式是其他两种模式的折中,与强制连续模式相比,提供最小的纹波和较高的轻负载效率,但不是以恒定频率工作。无论哪种模式,LTC3853 在负载电流较大时,都以恒定频率工作。在启动和停机时,LTC3853 的缺省设置都是脉冲跳跃模式,而且不允许输出电感器中有负电流。
多相工作
多相是描述一些拓扑的一般性术语,在这些拓扑中,由两个或更多个转换器处理一个输入,这些转换器相互同步但以不同的锁定相位运行。这种方法降低了输入纹波电流、输出纹波电压和总的无线频率干扰 (RFI) 特征,同时允许大电流单输出或具完全稳定输出电压的多个较低电流输出。当多个相位并联以满足大功率需求时,这种方法还允许使用较小的外部组件,这又增加了改进热量管理的好处。
其他特点
LTC3853 采用真正的电流模式控制,这种控制可在宽输出电容和 ESR 值范围内实现稳定工作,包括用来实现最小解决方案尺寸的所有陶瓷输入和输出电容器。通过测量输出电感器 (DCR) 两端的压降,或通过使用一个可选检测电阻器,可进行输出电流检测。过流折返限制 MOSFET 在短路和过载情况下散发的热量。在 -40°C 至 125°C 的工作温度范围内,LTC3853 还具有准确度为 ±1% 的 0.8V 精确基准。LTC3853 具有高达 98% 的占空比,并有非常低的压差电压,在电池供电应用中延长运行时间而言,这个特点非常有用。
既然在分布式电源系统中,空间和冷却都很难得,那么就任何 POL 转换器而言,紧凑和高效都是非常重要的。图 4 显示了图 1 电路的效率,而图 5 显示了采用全陶瓷电容器配置时每通道为 15A 的 LTC3853 演示板图片。
图 4:在 12VIN 时,LTC3853 的 1.2V/30A、3.3V/5A 高效率双输出效率曲线
图 5:每通道 15A 输出的 LTC3853 演示版
结论
在嵌入式应用的分布式电源系统中,电压轨的数量持续增加,因为需要这些电压轨为多种 ASIC、DSP、PLD、FPGA 和微处理器供电。为这些器件供电的 POL DC/DC 转换器需要有一些至关重要的特点:紧凑;高效率;启动和停机时,这些电压没有一个能通过电源的同步整流器放电;能给预偏置负载供电。此外,电压斜坡上升和斜坡下降需要受到控制,以确保接受供电的器件不闭锁或吸收过大的电流。凌力尔特公司提供一个 DC/DC 控制器、单调开关稳压器和微型模块 (µModule®) DC/DC 转换器系列,这些器件非常容易设定为跟踪任何数量的电压轨,而且其中大多数在加电和断电时不会使预偏置负载放电。LTC3853 是三输出同步降压型 DC/DC 控制器,可非常容易地配置为任何数量的电压轨排序或跟踪任何数量的电压轨,而且在 2 + 1 型配置中,允许两个输出并联,以满足大电流应用需求。
上一篇:超低电压能量收集器利用废热为无线传感器供电
下一篇:简单的将Vsupply 与负载接通的开关控制电路
推荐阅读最新更新时间:2023-10-18 16:00
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况