三相PFC整流器在输入电压不对称时的改进

最新更新时间:2011-12-24来源: chinaaet关键字:PFC  整流器  输入电压 手机看文章 扫描二维码
随时随地手机看文章
本文分析了基于单周期控制技术的双并联升压型三相 PFC 整流器在电网电压不对称时输入电流跟踪输入电压不良的问题,提出了一种有效的改进措施,通过计算相电压不对称系数,对占空比计算公式进行修正,以消除不对称电压对输入电流波形跟踪不良的影响,使每相电流均和各自的电压同相,从而实现单位功率因数和低电流畸变。在任意时刻,该整流器只需要两个开关管工作在高频状态,从而使开关管的总体损耗程度进一步降低。最后通过硬件实验验证了该控制策略的正确性。

1 引言

近十几年来, 随着电力电子技术的发展,许多大容量电机调速系统、家用电器等设备的电力供应都需要对交流电网进行各种AC/DC 或AC/DC/AC的变换。而使用传统的二极管或晶闸管为功率开关管的非线性变流装置进行的电源变换将会在电网中产生各种电流谐波,严重干扰了其他电气设备的正常工作,增加了功耗,同时使电网功率因数大大降低减少了电网的有效传送容量。为此,国际电工委员会的IEC1000-3-3 和IEC519 对整流设备的电流谐波和电磁干扰品质进行了严格。规定为了达到这些要求,各国学者对功率因数校正PowerFactor Correction, PFC 技术进行了深入研究,并取得了一系列成果。现在,PFC 技术已经成为电力电子学科的重要研究方向之一。目前,单相PFC 技术在电路拓扑和控制策略等方面已日趋成熟,但是三相PFC 整流器由于各相电流互相耦合,需要较为复杂的控制算法才能实现,而且它的输出功率大,对电网的污染更加严重,因此三相功率因数校正技术的研究和实现具有重要意义已成为近年来的研究热点。

三相 PFC 整流器的控制主要有半解耦和全解耦两大类,主流的控制算法有基于 d-q 解耦的空间矢量调制,迟滞比较算法和单周期控制等。空间矢量调制要求对输入电压进行d-q 解耦控制算法复杂,需采用数字信号处理器DSP 才能实现。而迟滞比较算法的开关频率不恒定,对输入和输出的干扰比较大,需要比较大的电感和电容作为滤波元件。

基于单周期控制的三相PFC 整流器进行了比较深入的研究,该控制器是一种不需要乘法器的新颖控制器,只需对输入电流进行简单的积分和加减运算,并和参考电压直接进行比较即能实现恒调制频率的开关元件控制波形。该控制器同时具有调制和控制的双重功能,无论在稳态或暂态情况下,在控制周期内受控的输入电流平均值均能恰好正比于控制参考信号,具有动态响应快、开关频率稳定、鲁棒性强、易于实现等优点。因而成为三相PFC 整流器的主流控制算法。但是在三相输入电压对称的情况下进行研究而在三相电压不对称的情况下,输入电流虽然仍能保持低的电流畸变,但输入电流将与输入电压产生相移,未能达到单位功率因数的控制目标。本文在分析该控制器产生相移原因的基础上,提出改进的控制策略,使该控制器在三相输入电压不对称的情况下,各相输入电流仍能和输入电压保持同相,实现单位功率因数和低电流谐波。

2 系统结构和状态方程

图 1 给出了双并联升压型三相整流器的主电路原理图。另外,图2 还给出了输入电压b 相幅值减少20% ,c 相相位滞后30 °时三相电压的波形,并按虚线划分为六个区间。须注意的是,输入电压不对称的情况不同,其分区点也可能不同,分区点由各相非零序电压瞬时最大幅度区分点所确定。依据六阶段PWM 控制技术原理,三相整流器可以通过在线性周期的每一区间内控制两个开关的通断来实现单位功率因数。


图1 双并联升压型三相整流器主电路拓扑图




图2  b相幅值减小20% ,c相滞后30 ° 时三相电压的波形图

在开始详细分析前,假设输入电压为正弦波,三相电路参数对称,功率元器件的正向阻抗和其他寄生参数忽略不计。以图1 的主电路输入如图2 所示的电压为例,在区间I 内,开关Sb 一直处于导通状态,只对开关Sa 和Sc 进行控制,此时三相整流器可以解耦为如图3 所示的双并联升压型拓扑结构。

图中 Vp 、Vn 为不同区间所对应的电压,Lp、 Ln 和Lt 为不同区间所对应的电感,Tp、 Tn 为不同区间所对应的主控开关,dp 、dn 为主控开关的占空比。由于PWM 开关频率远高于电网频率,因此,在一个开关周期内,各电感的电压平均值为零,运用回路电流法和节点电压法对各种开关状态进行分,析可得出:



从而推导出

其中


可以证明,式1 在任意区间的两种开关顺序都成立,并且只要电路工作在连续导通的模式,该等式即能准确反映出稳态电路的输入电压、输出电压和占空比三者之间的固定关系,与所采用的控制方案无关。因此式1 即为该整流器的状态方程。

3 不对称电压对输入电流的影响

依据式4 构建三相PFC 整流器,并根据三相电压对称和实现单位功率因数的目标而令va = Reia ,vb = Reib和vc = Reic,然后根据va+vb+vc=0和ia+ib+ic=0 的约束条件得知只要控制其中两相电流跟踪对应相的电压,就可以使另外一相电流也跟踪该相电压。由此推算出实现单位功率因数的占空比计算公式:

当输入电压不对称时,va+vb+vc=0 不一定成立,如果仍然按照式5 作为单周期控制的占空比函数,此时各相电流为:

其中:

即 van0, vbn0 和vcn0 分别为各相电压不含零序电压的部分。由式(6) 和式(7 )可知,各相电流仍能保持低电流畸变。但若(va+vb+vc)/3≠0, 输入电流和输入电压会存在一个相位差,从而导致系统不能实现单位功率因数。为使系统仍能实现单位功率因数的目标,必须改进系统的控制策略。

4 改进的控制策略

4.1 相电压不对称系数的计算
三相输入电压不对称时,假设各相电流跟踪各自的相电压此,时可令从输入端看进去各相对中线的等效电阻为Ra ,Rb 和Rc 。因系统采用三相三线制在任意时刻均有:

故对任意时刻 t0 t1 t2, ……,tn 有:

由于电网电压可能存在各种干扰,为使计算结果尽可能精确,可将一个或几个周期内的n 个采样电压分为多组,取其中的两组来计算相电压不对称系数。对式(9) 按该两组相加,可得:


由此得:

式 (11 )为相电压不对称系数的计算公式,其中λa ,λb 和λc 为相电压不对称系数,Re 为标准等效电阻。可见,当电网电压不对称时,为使各相电流仍能正确跟踪对应相电压,各相等效电阻值是不同的。特殊地,如果三相电压对称,λa=λb=λc =1 ,则Ra=Rb=Rc=Re.

4.2 PFC 控制策略
由于三相输入电压不对称,为达到单位功率因数,可令各相电流都跟踪各自相电压,即:

根据式 (3 ),以区间I 为例,可以通过控制开关 Tp 、Tn 使电感电流iLb iLc 对应 V *p和 V *n相应的变化来实现。由于在I 区间内有:

把式(8 )式(11 )和式(12 )代入式(13) 得:

把式(14 )代入式(3 )得:

令:


式中--Rs 等效电流监测电阻。Vm --反馈电压环误差补偿器的输出电压。

此时式(15 )可表示为:

采用相同的分析方法所有区间内的占空比公式可统一表示成:

其中矩阵 T 在不同区间的取值如表1。


表 1 矩阵 T 在不同区间的取值对照表

由式(17 )可知,如果控制开关Tp 和Tn, 使开关占空比dp 和dn 满足该式的线性组合,就可以实现三相PFC. 因此,式(17 )是改进后实现单位功率因数的关键函数。当输入电压对称时,λa=λb=λc=1 ,式(17 )即简化为式(5)。

4.3 改进策略条件下各相电流幅值分配比例
以下详细分析按改进策略控制整流器时各相电流幅值分配比例的情况。不失一般性,假设三相输入电压为:

由于改进策略的控制目标为各相输入电流跟踪对应相电压,因而各相输入电流可表示成:

将式(19 )代入式(8 )可得:

由式(20 )可得出以下三点结论:
①各相电流幅值的分配比例只与输入相电压的偏移角度有关,与各相输入电压的幅值大小无关。并且在一定范围内,偏移角度越大,该相的电流幅值分配比例就越大。
②若输入相电压相位对称,即θb=θc=0 ,输入相电流对称。
③输入缺相时,由于所缺相的电流必为0 ,由式(8 )和式(20 )可知,其他两相的电流也必为0 .此时,整流器不能正常工作。

5 实验研究

为验证以上理论分析的正确性,根据图1 所示的主电路拓扑结构搭建一个2kW 的三相PFC 实验系统。该实验系统采用TI 公司的TMS 320LF2407为整个系统的核心控制模块,实现区间判定、相电压不对称系数计算、占空比计算、PWM 调制等控制功能。系统的主要参数为:输入电感La=Lb=Lc=10mH ,输出电容C0=470μF ,主开关元件采用MTY25N60E, 整流二极管采用MUR3080 ;系统的输出为直流400V ;开关频率为5kHz ;负载电阻为;输出功率为1.6kW ;实验的输入电流和a 相电压如图4 所示,示波器电压波形为50V/格,电流波形为 5A/格;图4a、 图4b 的时间t 为4ms/格;图4d的时间t 为100ms/格,对比图4 电流波形可以发现:


 



图4 实验输入电压电流波形图

①只要三相电压相位对称,输入电流就对称。
②相位不对称时,各相的电流幅值差别就比较大。
③单位功率因数控制方法在输入电压不对称时输入电流会发生相移,实现不了单位功率因数。
④从图4d 可以看出系统动态响应时间约为4 个电源周期,这和采用文献[1]算法的系统动态响应时间大致相当。对图4a 和图4b 的各电流波形进行傅里叶分析,各相的THD 均在3%以下,功率因数为99.98%左右,进一步验证了改进控制策略的正确性在输入对称或不对称情况下,各相电流都能很好地跟踪相电压,实现了单位功率因数。

6 结论

本文分析了基于单周期控制技术的双并联升压型三相PFC 整流器在输入电压不对称情况下输入电流跟踪输入电压不良的问题,并给出了改进的控制算法。该算法通过一个或几个周期的采样电压计算出输入电网电压的相电压不对称系数,并由此修正单位功率因数的计算公式,使各相输入电流仍能很好地跟踪各相电压,实现单位功率因数和低电流畸变。与其他类型的三相PFC 整流器比较起来,本控制器有工作可靠、控制方案简单、只需要进行简单运算等优点,并且在输入电压不对称的情况下仍能实现单位功率因数和很低的电流畸变。随着DSP 技术和工艺的迅猛发展,高性能DSP 硬件成本越来越低,采用高性能DSP 实现本控制器,其电路复杂度将大大降低,具有良好的应用前景。

关键字:PFC  整流器  输入电压 编辑:探路者 引用地址:三相PFC整流器在输入电压不对称时的改进

上一篇:光纤激光器动态特性相关研究
下一篇:HoltekHT7A4016非隔离式DC电源解决方案

推荐阅读最新更新时间:2023-10-18 16:16

高效率和超宽输入电压范围DC-DC变换器的设计方法
  一个隔离DC/DC变换器的参数之一是该变换器能够正常工作的输入电压范围。对于那些应用于48V输入电信市场的工业标准砖型产品,其输入电压范围通常是36V~75V,或输入电压的最高值和最低值之比为2:1。但是有很多的应用期望变换器能够处理更宽的输入电压范围。比如,在一些系统应用中分布式输入电压具有很大的瞬态和浪涌,而且持续时间很长,需要滤波器滤掉。   作为一个例子,表1显示在不同 铁路 系统标准中分布式电压的稳态和瞬态范围。军用车辆设计规范也需要类似的宽输入电压范围,这样可以满足其分布式电压的变化。使用宽输入电压范围DC/DC变换器的另外一个原因是建立一个可以被用于不同直流系统的“通用”产品,对于标称值为12V, 24V
[电源管理]
高效率和超宽<font color='red'>输入</font><font color='red'>电压</font>范围DC-DC变换器的设计方法
TPS40077 - 具有电压前馈的高效、中档输入、同步降压控制器
TPS40077 是一款中电压、宽输入(4.5 V 至 28 V)、同步降压控制器,能够为各种用户可编程功能提供设计灵活性,这些功能包括软启动、UVLO、工作频率、电压前端以及高侧 FET 感应的短路保护。 TPS40077 能够使用第二代栅极驱动预测技术驱动外部 N 通道 MOSFET,以最大限度地降低低侧 FET 主体二极管的导电性能并提高效率。该器件直到闭环软启动所需的电压大于预偏置电压才允许低侧 FET 开启,以此来支持预偏置输出。其电压前馈能够很好地响应输入瞬态,并可在宽泛的输入电压工作范围内提供固定的 PWM 增益,以简化补偿要求。它的可编程短路保护提供了故障电流限制与打隔式恢复,能够最大限度地降低短路输出的功耗。此外,
[新品]
考虑PFC相位控制调光 多级LED驱动器脱颖而出
  目前设计一般的基本发光二极管( LED ) 驱动 器照明应用相对较简单,但是如果还需要其他功能如相位控制调光和 功率 因子校正(PFC),设计就变得复杂。无功率因子校正功能的非调光 LED驱动 器通常包含一个脱机式 开关电源 ,用于在恒定电流下调节输出。   这与标准脱机式开关电源如交流对直流(AC/DC)适配器内常用的类型,差别不大。这类设计基于标准交换式 电源 供应器(SMPS)电路拓扑,如降压、升压和逆向变换器。    新标准驱策LED调光技术突破   2009年12月3日,美国能源部(DOE)发布了最终版《整体式 LED灯 能源之星认证》要求家用LED驱动器的功率因子必须高于0.7。工业应用要求预计高于0.9。
[电源管理]
考虑<font color='red'>PFC</font>相位控制调光 多级LED驱动器脱颖而出
基于新型数字锁相环的三相电压型PWM整流器
随着工业自动化程度的日益提高,电力用户对安全、环保、可控、高质量的电能需求不断增长。三相电压型PWM整流器利用电容作为储能元件,与传统不可控二极管整流器相比,具有网侧功率因数可控、直流侧电压稳定、能量双向流动等优点,因此,在工程中得到了广泛应用 。 为获得PWM整流器的控制信号,需要利用网侧电压的相位进行坐标变换,但是在三相电网电压频率偏移时,普通锁相环存在响应速度慢、锁相精度差等缺点。参考文献 提出一种改进的锁相环,即锁相环输入是三相电压的某一相,并在采样环节前加入了延迟环节,改善了网侧电压电流的同步性。但在电网电压频率波动时,锁相效果不够理想。参考文献 提出一种基于瞬时无功理论的软件锁相环,通过两次坐标变换,分解电源电压
[工业控制]
基于新型数字锁相环的三相<font color='red'>电压</font>型PWM<font color='red'>整流器</font>
讨论基于三电平的单级PFC电路设计
    目前,带有功率因数校正功能的开关变换器通常分为两级结构和单级结构两种。两级结构电路具有良好的性能,但是元器件个数较多,与没有PFC功能的电路相比成本会增加。而单级PFC变换器中PFC级和DC/DC级共用开关管,只有一套控制电路,同时可实现对输入电流的整形和对输出电压的调节。但是,单级PFC电路上实际存在着一个非常严重的问题:即当负载变轻、达到临界连续状态时,多余的输入能量将对中间储能电容充电。这一过程会使中间储能电容两端的电压达到一个很高的值。这样,在电路中,对于90-265 V的交流电网,该电压会达到甚至超过1000 V。就目前的电容技术和功率器件技术而言,这么高的电压都是不实际的。因此,降低母线电容电压、适应宽电压
[电源管理]
讨论基于三电平的单级<font color='red'>PFC</font>电路设计
串行输入电压输出的14位DAC数模转换器芯片AD5551/AD5552
    摘要: 美国ADI公司生产的数模转换器AD5551/AD5552是一种串行输入电压输出的DAC,具有14位分辨率,并具有施密触发输入和快速稳定时间等特点。可用于自动控制、数据获取和工业过程控制系统中。     关键词: DAC 3线串行接口 施密特触发 AD5551/AD5552 1 概述 AD5551/AD5552是单极电源、14位分辨率、串行输入、电压输出的数模转换器,它们采用了多功能3线接口技术,能与SPI、QSPI、MICROWIRE和DSP接口兼容。该DAC的无缓冲输出减少了输出缓冲所引起的功耗和偏离误差。AD5552有一个外部运算放大器,能够在双极模式下工作,具有±VREF的输出电
[应用]
LT3758 - 高输入电压、升压、反激式、SEPIC 和负输出控制器
     描述   LT ® 3758 是一款宽输入电压范围、电流模式、DC/DC 控制器,该器件能够产生正输出或负输出电压。它可以被配置为一个升压、反激式、SEPIC 或负输出转换器。LT3758 从一个内部 7.2V 稳压电源来驱动一个低端外部 N 沟道功率 MOSFET。固定频率、电流模式架构在一个很宽的电源电压和输出电压范围内实现了稳定的操作。   LT3758 的工作频率可利用一个外部电阻器来设定 (可设置范围为 100kHz 至 1MHz),并能够采用 SYNC 引脚来使其同步至一个外部时钟。由于具有一个 5.5V 的最小工作电源电压和一个低停机静态电流 ( 1μA),因而使 LT3758 成为电池供电式系统的
[电源管理]
LT3758 - 高<font color='red'>输入</font><font color='red'>电压</font>、升压、反激式、SEPIC 和负输出控制器
Vishay发布低外形封装的高性能SMD雪崩整流器
宾夕法尼亚、MALVERN — 2012 年 4 月17 日 — 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出新款采用DO-214AC封装的高压、超快表面贴装雪崩整流器---BYG23T。该器件将1.98mm的低外形、1300V的极高反向恢复电压和75ns的快速反向恢复时间集于一身。 今天发布的整流器适用于开关电源(SMPS)、HID点火驱动和工业镇流器中的高压、高频整流。BYG23T在+125℃下的典型反向电流为2.9μA,在雪崩模式中的脉冲能量为5mJ,正向电流为1.0A,在1A电流和+125℃温度下的正向电压为1.39V。 BYG23T非常适合自动拾取放置
[电源管理]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved