推荐阅读最新更新时间:2023-10-17 15:02
燃料电池车用大功率DC/DC变换器电磁兼容
引言
目前,燃料电池电动汽车(FCEV)成为我国汽车科技创新主攻方向。燃料电池电动汽车动力系统主要由燃料电池发动机,DC/DC变换器,蓄电池,电机控制器(变频器)及电机,整车控制器,数据采集系统及CAN总线组成,如图1所示。其中DC/DC变换器可以对燃料电池的输出进行控制及能量的传递与转换,成为燃料电池电动汽车关键零部件之一。在燃料电池电动汽车运行过程中,DC/DC变换器所处的电磁环境十分复杂,各种形式的电磁干扰很多,严重影响了DC/DC变换器的正常运行。因此,研究FCEV用DC/DC变换器的电磁兼容性对DC/DC变换器乃至燃料电池电动汽车的可靠运行具有重要意义。
大功率DC/DC变换器主要干扰源及
[电源管理]
一种紧凑型全桥DC-DC隔离电源设计
针对半桥IGBT 集成驱动板上隔离电源及驱动板负载的特点,设计了一种两组磁芯共用一组高频全桥开关的DC-DC 隔离电源。简洁的电路产生4 路全桥驱动脉冲信号,无需隔离,实现了板上电源的紧凑设计,提高了功率密度。对关键信号的产生进行了仿真实验,结果表明,该电源电路简洁、高效、可靠,与 IGBT 半桥集成驱动板达到了良好的结合。 新型电力电子器件IGBT 作为功率变换器的核心器件,其驱动和保护电路对变换器的可靠运行至关重要。集成驱动是一个具有完整功能的独立驱动板,具有安装方便、驱动高效、保护可靠等优点,是目前大、中功率IGBT 驱动和保护的最佳方式。 集成驱动一般包括板上DC-DC 隔离电源、PWM 信号隔离、功率放大、故
[电源管理]
如何从降压型DC/DC转换器产生辅助电源
很多应用中,除主电源之外通常还需要一个低功率电源。例如:模拟前端放大器需要5V电源供电,而数字主电路只需+5V电源。基于成本、物料管理以及EMC等因素的考虑,单独增加一路-5V电源不是很合适。因此,需要寻找一种可以从主电源产生辅助电源的方法。
为解决上述问题,可以用一个降压转换器的开关操作产生一路或多路、隔离的或非隔离的电源输出。从主电源获取10%~30%的辅助电源输出电流是完全可行的,本文将通过MAX5035 DC/DC转换器说明具体的实现方案。
降压波形
首先回顾一下降压转换器的工作波形,确定用来产生辅助输出的电压和电流,参见图1。
LX引脚的开关电压波形幅度为:
开关管
[电源管理]
高速ADC的低抖动时钟设计
引言
ADC是现代数字解调器和软件无线电接收机中连接模拟信号处理部分和数字信号处理部分的桥梁,其性能在很大程度上决定了接收机的整体性能。在A/D转换过程中引入的噪声来源较多,主要包括热噪声、ADC电源的纹波、参考电平的纹波、采样时钟抖动引起的相位噪声以及量化错误引起的噪声等。除由量化错误引入的噪声不可避免外,可以采取许多措施以减小到达ADC前的噪声功率,如采用噪声性能较好的放大器、合理的电路布局、合理设计采样时钟产生电路、合理设计ADC的供电以及采用退耦电容等。本文主要讨论采样时钟抖动对ADC信噪比性能的影响以及低抖动采样时钟电路的设计。
(a)12位ADC理想信噪比
(b)AD9245实测信
[模拟电子]
信号处理机的高速ADC模块动态性能在线测试
摘 要 :在设计信号处理机的工作中,需要分析模数转换电路模块对整个系统的影响。本文介绍了一种基于DSP技术在线测试信号处理机的高速ADC转换电路动态性能参数的方法。该方法利用信号处理机的本身的DSP数据采集系统,实时采集标准测试信号。再利用matlab软件对数据进行频谱分析,计算出高速ADC模块的SENAD,SNR 等几个主要的动态参数。实现了电路板的ADC器件及周边电路的性能进行在线评估,对工程实践有一定的指导作用。
关键字: ADC;动态性能;DSP;matlab;在线测试
高速ADC是信号处理机的不可欠缺的组成部分,其性能的好坏对信号处理系统的整体性能也至关重要。通常ADC的技术参数
[模拟电子]
DC/DC转换器数据表——静态电流解密:第一部分
DC/DC转换器中最令人困惑的技术规格就是它的静态电流,或者说IQ。其中一个原因是每个厂商都使用不同的专业术语和定义来指定同一件实物 至少对于那些不熟悉开关稳压器详细运行的人是这样的。
在这两部分系列的第一部分,我将重点谈一谈输入电源所需要的,流入降压稳压器输入电压 (VIN)引脚的电流。当研读数据表时(你始终必须阅读数据表!),最好关注输入电流的条件,而不要被专业术语搞糊涂。我们来看一看普通用户将会感兴趣的3个最重要的电源电流。
关断电流 通常是指稳压器关闭时测得的电源电流。在这些情况下,标称输入电压存在,不论使能引脚关断转换器所需要的电压是多少,稳压器的输出均为0V。这看起来似乎有点儿奇怪,当稳压器关
[电源管理]
一种用于高速ADC的采样保持电路的设计
近年来,随着数字信号处理技术的迅猛发展,数字信号处理技术广泛地应用于各个领域。因此对作为模拟和数字系统之间桥梁的模数转换器(ADC)的性能也提出了越来越高的要求。低电压高速ADC在许多的电子器件的应用中是一个关键部分。由于其他结构诸如两步快闪结构或内插式结构都很难在高输入频率下提供低谐波失真,因此流水线结构在高速低功耗的ADC应用中也成为一个比较常用的结构。 作为流水线ADC前端的采样保持电路是整个系统的关键模块电路之一。设计一个性能优异的采样保持电路是避免采样歪斜(timing skew)最直接的方法。 本文基于TSMC 0.25μm CMOS工艺,设计了一个具有高增益、高带宽的OTA,并且利用该OTA构造一个适用
[电源管理]
浅谈STM32 模数转换器 (ADC)(下)
温度传感器和VRENFINT通道框图 要使用传感器,请执行以下操作: 选择 ADC1_IN16 或 ADC1_IN18 输入通道。 选择一个采样时间,该采样时间要大于数据手册中所指定的最低采样时间。 在 ADC_CCR 寄存器中将 TSVREFE 位置 1,以便将温度传感器从掉电模式中唤醒。 通过将 SWSTART 位置 1(或通过外部触发)开始 ADC 转换 读取 ADC 数据寄存器中生成的 V SENSE 数据 使用以下公式计算温度: 温度(单位为 °C)= {(V SENSE — V 25 ) / Avg_Slope} + 25 其中: — V 25 = 25 °C 时的 V SENSE 值 — Avg
[单片机]