用于风力发电的电压跌落发生器

最新更新时间:2012-11-30来源: 维库电子关键字:风力发电  电压跌落  发生器 手机看文章 扫描二维码
随时随地手机看文章

     目前我国的风电技术大多还停留在理想电网条件下的风电机组的运行控制,而实际电网中存在有各类对称、不对称故障发生。电网规范要求风力发电系统必须具备低电压穿越能力,因此,大容量并网型风力发电机在电压跌落下的控制策略研究是一个亟待解决的问题。为了研究和测试风电系统的低电压穿越能力,必须利用具有专门模拟电网电压故障的设备,此类设备称为电压跌落发生器(VSG)[2]。可行性强的电压跌落发生器可以产生各种不同类型的电压跌落,满足电压跌落深度的要求,可控电压跌落相位及跌落时间,具有高功率、易实现和低成本的特点。

  本文提出一种新型的电压跌落发生器,它可模拟单相、两相及三相电压跌落,且电压跌落的持续时间、跌落深度、起止相位和跌落类型均可调,具有操作简单、可靠性高、实时性好等特点,适用于风电机组及其他电气、电子产品在电网电压故障情况下的性能测试和研究。

  1 电压跌落发生器

  目前,国内外针对电压跌落发生器展开了研究。参考文献[2-4]论述了3种形式(阻抗形式、变压器形式和电力电子变换形式)的VSG实现方法。

  (1)阻抗形式的VSG。利用继电器、接触器或晶闸管将电阻/电抗器串联或并联到主电路中实现电压跌落。这种方案结构简单,实现方便,但由于受电阻功率的限制,往往要求较大阻值的电阻,这使得电压跌落较深,且损耗较大。如果串/并联的阻抗是固定的,导致电压跌落深度不可调,由于负载的变化即使采用了可变电阻也会引起阻抗匹配关系改变,使得跌落深度难以有效控制。阻抗的存在使负载侧的设备无法向电网馈送能量,因此无法用此设备进行无功补偿。受开关器件的限制,电阻形式的VSG无法实现三相电压的同时跌落。这些缺点影响了阻抗型VSG的使用。

  (2)变压器形式的VSG有2类:①采用继电器将变压器并联或串联到主电路中,来实现电压跌落;②利用中心抽头在变压器副边相互切换实现电压跌落。当采用变压器并联方式时,其中1个变压器要工作在副边对地短路的故障状态才能实现电压跌落,这要求其具有较强的抗电流冲击能力,从而导致此变压器价格过高[2]。此外,这一方案存在电压跌落深度不可调的缺点。而中心抽头变压器形式的VSG设计工艺复杂,不易推广。总之,由于受开关器件的限制,变压器形式的VSG,电压跌落时间无法精确控制,当功率较大时,变压器体积和重量都很大,造成使用不便。

  (3)电力电子变换形式的VSG。采用交-交变频器或交-直-交变频器,利用大功率可控器件实现电压跌落,以控制电压跌落的持续时间、跌落深度、起止相位和跌落类型。使用功率二极管、IGBT作为开关器件时,受器件功率的限制功率等级不能过大。选用GTO、IGCT等器件虽然可以提高功率等级,但设备成本很高且控制复杂,可靠性不佳,且由于器件自身抵抗电网故障的电压、电流冲击能力有限,因此,该方案一般局限于实验室和小功率范围内使用,不利于大规模推广。

  2 新型电压跌落发生器的结构和控制实现

  如图1所示是一种典型的风力发电机并网规范,当电网电压发生跌落故障,但是跌落幅度在粗实线以上的范围之内时,风力发电机必须保持与电网连接。电压跌落发生器即要产生粗实线以上范围的电压跌落模拟电网的故障以检测风电系统的低电压穿越能力。


  图2所示为本文提出的电压跌落发生器构成框图。它由上位机、DSP、调压器、IGBT双向开关、IGBT驱动与保护电路、电流霍尔传感器、风电机组构成。工作时,上位机通过DSP向IGBT驱动与保护电路输出电压跌落与恢复指令信号,控制IGBT双向开关I、IGBT双向开关II轮流导通,使电压跌落发生器输出电压在调压器的原边和副边之间切换,从而模拟各种对称与不对称电网电压跌落故障。电压跌落信号除可来自DSP外也可以由手动开关给出。从主电路获取电压跌落发生器输出的三相电流信号,判断电压跌落发生器是否过流,进而决定是否采取过流保护。


  调压器采用Y-Δ接法。原边输入为电网电压,副边输出电压可调,即为跌落电压。若3个单相调压器副边输出电压相等,则产生三相电压对称跌落故障;若3个单相调压器副边输出电压不相等,则产生三相电压不对称跌落故障。

  IGBT双向开关采用桥式结构,如图3所示。单相整流桥D保证IGBT单管T的集电极与发射极之间电压Vce为正。缓冲电阻R和缓冲电容C降低IGBT单管T两端的电压变化率,抑制浪涌电压,减小开关损耗。压敏电阻Rv用于吸收线路电感在IGBT单管关断时储存的能量,防止IGBT单管T两端出现较大的过电压。这种结构的优点是只需要1个IGBT,并且Vce一直为正,使得驱动电路、缓冲电路与保护电路减少一半且设计更加简单。


  系统的IGBT驱动与保护电路包括IGBT驱动电路、IGBT开通死区电路和IGBT过流保护电路。

  IGBT驱动电路芯片是三菱公司的M57962AL,它采用+15 V与-10 V双电源供电,使关断更为可靠。

  IGBT开通死区电路的作用是在IGBT双向开关I、II的开通和关断动作之间造成死区,防止2个IGBT双向开关同时导通造成调压器的原、副边短路,如图4所示。IGBT双向开关I、II的开通死区时间可以通过改变死区电路中的电阻值或者电容值来调节。电压跌落与恢复指令信号DIP既可来自DSP,也可以来自手动开关。


  IGBT过流保护电路使用电流检测法以保护机组系统的安全。由电流传感器检测电压跌落发生器的输出电流,若出现瞬时过流,则驱动芯片进入软关断状态以避免IGBT过流损坏。

  3 实验结果

  根据本文提出的电压跌落发生器的拓扑结构和控制方法进行了实验验证。图5所示为带三相电阻负载的实验波形,图中方波为电压跌落与DIP恢复指令信号,3条正弦波为三相电阻两端的电压波形。

  图5(a)、(b)是三相电压对称跌落至30%的实验波形,调压器原边输入电压为110 V。图5(a)是电压跌落瞬间的波形放大图,图5(b)是控制电压跌落200 ms后恢复300 ms的波形图。

  图5(c)是三相电压对称跌落至15%的实验波形,调压器原边输入电压为220 V。第2行为跌落瞬间波形放大,可以看出电压跌落仅用了20 μs。

  图5(d)是三相电压不对称跌落的实验波形,其中负序分量含20%,电压跌落200 ms之后恢复正常。






图5 实验波形

  通过实验可知本电压跌落发生器的电压变化范围为0%~140%;电压跌落持续时间可从20 μs到任意时间;可以实现任意单相、两相跌落或者三相同时跌落;跌落触发方式可用手动或计算机定时触发。

  本文介绍了一种用于风力发电的电压跌落发生器。利用可控器件IGBT在调压器的原、副边之间切换来实现电压跌落,且电压跌落的持续时间、跌落深度、起止相位和跌落类型均可控,具有操作简单、可靠性高、实时性好、成本较低等特点。

  实验结果表明,此电压跌落发生器既能产生对称电压跌落故障,也能产生不对称电压跌落故障,并能够模拟图1中所示电网规范规定的各种电网电压故障,除了可用于风力发电系统之外,还适用于其他电气、电子产品在电网电压故障情况下的性能测试和研究。

关键字:风力发电  电压跌落  发生器 编辑:探路者 引用地址:用于风力发电的电压跌落发生器

上一篇:热插拔控制器和电源监控器 ADM1275
下一篇:电源适配器的拆解

推荐阅读最新更新时间:2023-10-17 15:11

基于DSP的正弦信号发生器设计
正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。   目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低 频信号发生器 ,虽然其低频性能好但体积较大,价格较贵,而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。    系统原理   一般的采样型SPWM法分自然采样法和规则采样法,自然采样法是将基准正弦波与一个载波
[嵌入式]
基于DSP的正弦信号<font color='red'>发生器</font>设计
80C196MC片内波形发生器在逆变电路中的应用
1 前 言 无源逆变技术在交流电动机调速、不间断电源、交-直-交变频电路等方面已经有了非常广泛的应用。而脉宽调制技术更是以其谐波抑制、动态响应、频率和效率等方面的明显优势取得了很大的发展。特别是在自关断器件出现成熟以后,逆变电路越来越多地采用脉宽调制控制方式。 采用硬件产生正弦脉宽调制波形的电路比较复杂,而且难以精确控制;而采用软件产生正弦脉宽调制波形又需要占用大量的CPU开销,从而降低了计算机的利用率;另外,大功率电力电子器件的保护和控制都比较困难,驱动电路也较复杂。这些因素都阻碍了逆变技术的发展,降低了装置的可靠性。本文介绍一种将 80C196MC单片机的片内波形发生器(WFG)和智能功率模块(IPM)应用于逆变电
[单片机]
基于rockwell自动化PLC的风力发电通讯系统
  1引言   风力发电技术发展很快,装机容量不断增大,在世界各地都受到了广泛重视。在目前的变速恒频风电系统中,使用双馈感应发电机(DFIG)的双馈型风电系统市场份额最大,使用永磁同步发电机(PMSG)的直驱型系统发展很快 。不管是双馈型还是直驱型风电系统,其整体控制都比较复杂,需要有主控系统来协调变桨、偏航、变流器、测量、保护和监控等多项环节,且风电系统通常运行环境比较恶劣,各执行机构之间可能存在一定的距离,因此通讯问题至关重要 。   可编程序控制器(Programmable Logic Controller,PLC),是一种专为工业环境应用而设计的电子系统,采用可编程序的存储器,在内部存储执行逻辑运算、顺序控制、定时
[电源管理]
基于rockwell自动化PLC的<font color='red'>风力发电</font>通讯系统
大神教你用51单片机做信号发生器,同时输出四种频率的方波的技术
//编写51单片机程序,输出方波。 //要求:晶振为12MHz,用T0做定时器,在P1的低四位输出四种频率的方波: // P1.3 = 1.25kHz、P1.2 = 2.5kHz、P1.1 = 5kHz、P1.0 = 10kHz //另外,上述四个频率要求用一个四选一数据选择器,再选出其中的一个输出出去。 //P1.6、P1.7的输出用来控制四选一数据选择器的选择位,它们由P3.0按键控制。 //最佳答案: //本题目早在一年前就回答完毕,现在增加了PROTEUS仿真图片发上博客。 //题目要求在相邻四条接口线输出的四种频率,恰有二倍的关系,这就可以利用一个定时中断来完成。 //题目还要求使用一个数据选择器,通过按键选择一个频
[单片机]
大神教你用51单片机做信号<font color='red'>发生器</font>,同时输出四种频率的方波的技术
信号发生器的种类和差数
  信号发生器的种类和差数凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。信号源是根据用户对其波形的命令来产生信号的电子仪器。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在电子实验和测试处理中,并不测量任何参数,而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。   信号源的分类和作用信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正
[家用电子]
工控平板电脑在风力发电监控平台中的应用
系统概要: 节能减排和新能源是未来发展的大趋势,加上政府的大力支持,风能市场也迅速发展。相关数据显示未来20-25年内,世界风能市场每年将递增25%。按照国家规划,未来15年,全国风力发电装机容量将达到2000万至3000万千瓦。以每千瓦装机容量设备投资7000元计算,未来风电设备市场将高达1400亿元至2100亿元。风电产业的迅猛发展也将萌生风电产业设备控制系统、管理系统及远程监控系统的需求,为工控厂商带来新的机遇。下面将介绍系统集成商采用华北工控平板电脑集成风电行业设备控制监控系统案例。 系统框图 系统原理: 该风电控制监控设备需要对现场设备运行情况作准确监测和控制,实现数据采集、设备控制,然后将控制信号通过网络汇总到服务器
[嵌入式]
通用三角波发生器电路图
该电路适用于很宽的温度范围,具有很好的线性和振幅稳定性,输出幅度可达±8V。通用三角波发生器电路图:
[模拟电子]
通用三角波<font color='red'>发生器</font>电路图
AeroflexS系列信号发生器将相位噪声性能提高到-140 dBc/Hz
艾法斯控股有限公司的全资子公司艾法斯有限公司宣布:其最新版本的S系列信号发生器(SGA和SGD)的性能已得到了提升,使其相位噪声得以改善并拥有更好的RF电平精度。在载波频率为1 GHz、频率偏移为100 kHz至1 MHz时,相位噪声可以改善多达6 dB,使得此区间内的相位噪声典型值达到-140 dBc / Hz。S系列在实现了此项技术水平的大幅度提升的基础上,仍旧保持了高达100微秒的业界领先的频率切换速度。 通过添加宽带模拟调制和任意波形发生器(ARB)列表模式,SGD的应用范围实现了进一步的扩展。模拟调制功能提供了仪表的内部AM、FM和相位调制,ARB列表模式则允许用户在ARB中设置并生成多个波形文件,并将这些波形文件以串
[测试测量]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved