基于LTC6802的电池组监控平台的电路设计

最新更新时间:2013-04-26来源: 电子发烧友关键字:LTC6802  电池组 手机看文章 扫描二维码
随时随地手机看文章

 应用美国Linear Technology 公司推出的电池组监控芯片LTC6802,设计了一套可用于锂离子电池组的监控平台。该系统单板可实现对多达12 节串联单体电池的监控,可采用分布式结构实现对更多单体的监控。本系统设计实现的功能包括单体电压采集、单体温度采集、电池组被动均衡以及分布式CAN 通信等。LTC6802 的主要特点在于其电压采集精度高,并具有较高的集成度,在电池应用设备中特别是在纯电动/ 混合动力汽车中具有良好的应用前景。

  随着环境和能源问题日益严峻,电动汽车及混合动力汽车(EV/HEV)已经成为了当今世界关注的焦点。蓄电池是EV的动力环节,但其单体端电压及容量都较小,比如广泛应用的磷酸铁锂(LiFePO4)电池端电压一般不超过3.65 V,因此常需多单体串并联组合使用来满足车辆的需求[1-3]。对于车载电池包而言,一个功能完备的监控系统是非常必要的。目前国内的电池组监控设备存在两大问题:一是电池电压检测精度不高,二是电池组均衡控制的实现较复杂。针对这些问题,本文应用Linear Technology 公司新推出的电池组监控芯片LTC6802,设计了一套面向锂离子电池组的硬件监控平台。该平台设计实现的功能包括单体电压/ 温度检测、电池组均衡以及分布式CAN 通信等。

  1 电池组监控芯片LTC6802 简介

  LTC6802-1 是一款专门用于电池组监控的芯片,每片可以检测多达12 个串联连接的单体电池电压,输入总电压高达60V,可以通过分布式总线结构或直接将芯片串联的方式来实现对更多串联单体电池的电压检测。此外,LTC6802-1 还具有以下特性:

  (1)具有12 位ADC,电压采集精度高,可达5~8 mV;(2)具有被动均衡功能,可通过片内(或外部扩展的)MOSFET开关对过压的单体进行放电;(3)1 MHz 可与SPI 兼容的串行通信接口;(4)具有较强的抗电磁干扰能力。

  总的来看,LTC6802 具有较全面的电池组监控功能,芯片集成度高,并具有较高的电压采集精度,主要应用场合除了EV/HEV 以外,还包括高功率便携设备电源管理以及备用电池组系统的监控。

  2 电池组监控平台设计

  2.1 电池监控系统整体结构

  电池组监控平台的整体结构如图1 所示。本平台设计采用分布式CAN 总线结构,首先,LTC6802 用于实现对单体电压的采集以及串联电池组的被动均衡控制;主控芯片负责接收来自LTC6802 的电压采集信息,并对LTC6802 的相关参数进行设置,此外MCU 还用于实现电池包节点温度以及电流的采集;最后MCU 将电池包的组态信息发送到CAN 通信网络。

  

  图1 电池组监控平台整体结构

  2.2 LTC6802 与MCU 的连接电路设计

  LTC6802 的外围电路及其与微控制器之间的连接电路如图2 所示。本电路中MCU 选取的是Freescale 系列单片机MC9S08DZ60,其主要功能是进行电流和温度采集、接收来自LTC6802 的信息并将电池包组态信息发送到分布式CAN 通信网络中。

  

  图2 LTC6802 与MCU 的连接电路

  LTC6802 可通过其自身与SPI 兼容的串行接口实现与MCU 的通信。对于LTC6802 而言,CSBI 为片选信号;SDO 为串行数据输出;SDI 为串行数据输入;SCKI 为串行时钟输入。

  此外,为了保证通信过程稳定可靠,本设计中还引入了静电干扰抑制电路,见图2 中的D7-D15.该电路由8 个二极管和一个齐纳二极管组成,实际也可以采用专用的ESD 静电保护器件PRTR5V0U4D 来实现。

  MCU 的另一项任务是将电池包组态信息发送到CAN 通信网络中。在此本设计选取了CAN 隔离驱动芯片ISO1050,见图2 中的U1.为了进一步提高CAN 通信的抗干扰性能,在平台的CAN 输出端还采用了瞬态电压抑制芯片PSM712.

  2.3 电压采集及均衡电路设计

  LTC6802 最主要的功能是实现对电池组内单体电压的检测以及在单体过压状态下的均衡控制。LTC6802 具有12 位ADC,可实现对多达12 节串联单体的电压检测,芯片外围的电压采集电路也比较简单,只需将单体的正负极分别接入芯片对应的单体电压输入端即可,为了抑制电压信号中的高频噪声,电路中还加入了RC 低通滤波环节。此外,LTC6802 还具有MOSFET 驱动输出能力,该驱动输出端内置了10k 的上拉电阻,可用于驱动外部MOSFET.

  对于串联电池组中的单体n 而言,其对应的电压采集电路和均衡控制电路如图3 所示,其中上图为电压采集电路,下图为均衡控制电路。图中CELLn 和CELLn-1 分别接到单体n的正极和负极;Cn 和Cn-1 为LTC6802 电压采集输入端;DCn为LTC6802 的MOSFET 驱动输出端。当单体n 出现过压

  2.4 温度采集电路设计

  电池包节点温度也是组态信息中的重要参数。在本平台中,节点温度的检测由MCU 实现,设计每个单体取一个节点,共计可实现对12 个节点的温度检测。温度采集电路如图4 所示,图中给出了节点1 的连接电路。首先,设计中选取热敏电阻RT103 作为温度传感原件,将温度信号转换为电压信号;接着,电压信号输入模拟开关器件CD4067D,可通过MCU 配置其ABCD 四个控制端对输入信号进行选通,并由其公共端即管脚1 输出;最后,模拟开关输出的信号经RC 滤波及限幅处理后输入到MCU 的AD 输入端,节点温度采集得以实现。

  

  图3 电压采集及均衡电路

  

  图4 温度采集电路

  3 结论

  本文基于电池监控芯片LTC6802 以及Freescale 系列微控制器MC9S08DZ60,设计了一套面向串联锂离子电池组的监控平台。论文结合芯片特点及平台应用场合,分别对电压检测电路、均衡控制电路、温度采集电路、SPI 通信及CAN 通信电路进行了具体的设计。该平台充分利用了LTC6802 集成度高、电压采集精度高以及抗干扰能力强的特点,很大程度上改善了传统的电池监控电路存在的电压采集精度差和电路结构复杂的问题。可以断言, 在EV/HEV 产业中,这种基于LTC6802 的电池组监控平台具有很强的应用价值和良好的应用前景时,Q1 将导通对其放电,放出的电能会消耗在电阻R1 上。

关键字:LTC6802  电池组 编辑:探路者 引用地址:基于LTC6802的电池组监控平台的电路设计

上一篇:浅析智能手机“一小时充电”的充电保护方案
下一篇:抑制PCB对直流电源噪声干扰的滤波器设计

推荐阅读最新更新时间:2023-10-17 15:18

浅谈电池组并联使用的利弊
长期以来,无论是国内还是国外,也不论是通信系统还是UPS系统,人们都习惯于用两组电池并联起来与一台 UPS 或一台通信设备配套使用。不知道是因为习惯势力还是因为别的什么原因,这种并联使用的方式竟成了设计者们和使用者们的一条必须遵循的原则,但笔者认为,则大可不必,只要用户能按照电池生产厂家的使用说明书对电池维护保养好,只用一组电池也就足够了,不但足够,而且这一组电池的使用效果(如:电池的稳定性、可靠性、均衡性、尤其是电池的使用寿命等)会比用两组电池并联使用时的情况好得多。特别是对于阀控式密封铅酸蓄电池来讲尤其是这样。那么,笔者为什么积极的主张(甚至是不赞成)不宜将电池组并联使用,并联使用哪些利弊呢? 首先我们来回顾一下并联电
[电源管理]
基于LTC68021锂电池组管理芯片设计的电池组均衡电
本文设计的 均衡电路 的基本原理是通过使用专用电池组管理芯片LTC6802-1测量电池组中单体电池电压, 将数据通过SPI总线传送给单片机, 单片机通过决策对均衡电路进行控制。实验表明, 基于LTC6802-1芯片设计的均衡电路, 在电池组使用过程中单体电池的能量一致性得到了明显改善。   1 均衡电路工作原理   本文基于LTC68021 锂电池组管理芯片设计的电池组均衡电路, 由取电系统、嵌入式处理器、LTC6802-1数据采集及均衡电路四部分构成, 电路框图如图1所示。      图1 基于LTC6802-1设计的均衡电路结构框图   取电系统是均衡电路的供电来源, 电源取自锂电池组
[电源管理]
基于LTC68021锂<font color='red'>电池组</font>管理芯片设计的<font color='red'>电池组</font>均衡电
电池组的容量测试及分析
  通信电源是整个通信网络的组成部分,电源设备供电的高可靠性直接影响通信全网的畅通。蓄电池作为备用电源,是供电系统最后一道防线,因此及时掌握电池实际容量信息是非常重要的。本文结合日常维护工作,对三种容量测试方法分析优劣,根据具体情况选择不同容量测试方法。   通信电源是整个通信网络的组成部分,电源设备供电的高可靠性直接影响通信全网的畅通。在通信领域,蓄电池起到荷电备用作用,是作为通信电源系统最后一道保障来定位、使用的。近几年来,因通信电源系统中蓄电池故障导致的通信事故时有发生,因此及时掌握电池实际容量信息是非常重要的。通过对三种容量测试方法分析,在日常运行维护中,根据具体情况选择不同容量测试方法。   目前电池组容量测
[测试测量]
蓄<font color='red'>电池组</font>的容量测试及分析
动力电池组测试平台设计
  1 前言   作为电动汽车的能量存储部件, 电池的功率密度、储电能力、安全性等不仅决定着电动车的行驶里程和行驶速度, 更关系到电动车的使用寿命及市场前景。目前, 电池在实际使用中普遍存在的问题是电荷量不足, 一次充电行驶里程难以满足实用要求。   另外, 用可测得的电池参数对电池荷电状态( SOC,S tate- O f- Charge)作出准确、可靠的估计, 也一直是电动汽车和电池研究人员关注并投入大量精力的研究课题。因此有必要建立动力电池测试平台, 利用该平台对电池相关参数进行全面、精确的测量, 实现电池性能试验, 工况模拟和算法研究, 确定最合理的充放电方式及更为精确的SOC 估算方法, 从而合理的分配和使用电池
[单片机]
动力<font color='red'>电池组</font>测试平台设计
全新本田e公布细节:搭载水冷式电池组,续航200km
据本田官方消息称,为了缓解车迷等待的焦急心情,公布了旗下首款基于专用电动汽车平台的产品——本田e的最新技术细节。作为全新纯电动汽车,该车将使用全新的纯电动平台打造,并采用后轮驱动;新车将搭载35.5kWh的电池组,其续航里程为201km。据悉,本田e预计将于今年年内发布,并将于2020年春季开始交付。 有外媒在报道中称,本田e将搭载水冷35.5kWh的电池组,工程师们将该锂离子电池组置于地板下两轴之间的低位,这样的设计会将整体重心降低,从而使得本田e的前后重量分布达到了50:50。 本田e将采用后轮驱动,后轴将连接到高扭矩的电动马达。这将能在高速度下实现精准的转向能力以及操控稳定性。 至于水冷式电池组,可使用Type
[嵌入式]
电动汽车蓄电池组电池管理及其状态检测
  蓄电池技术是下一代汽车——电动汽车的核心技术之一。蓄电池是复杂的电化学系统,国内外对电池管理技术都进行了大量的研究,取得了许多成果。一般认为电池管理系统主要有如下功能:电池状态参数采集(包括温度、电压、电流等);电池荷电状态(State of charge,SOC)的准确估计;不健康电池的早期诊断;对电池组安全运行全面监控,如防止电池的过充电和过放电等等。   由于电动汽车蓄电池组通常是由几十个(上百个)单体电池组成,所以,每一个单体电池的工作状态正常与否不仅反映电池组性能的好坏,而且影响电池组的容量及剩余能量。实践表明,在电动汽车运行过程中,如不及时检测,找出老化电池给予调整,电池组的容量将变小,寿命将缩短,影响整个电池
[电源管理]
电动汽车蓄<font color='red'>电池组</font>电池管理及其状态检测
串连蓄电池组的均充方法研究
单个蓄电池的电压与容量有限,在很多场合下要组成串连蓄电池组来使用。但蓄电池组的中的电池存在均衡性的问题。如何提高蓄电池组的使用寿命,提高系统的稳定性和减少成本,是摆在我们面前的重要问题。   蓄电池的使用寿命是由多方面的因素所决定,其中最重要的是蓄电池本身的物理性能。   此外,电池管理技术的低下和不合理的充放电制度也是造成电池寿命缩短的重要原因。对蓄电池组来说,除去上述原因,单体电池间的不一致性也是个重要因素。针对蓄电池充放电过程中存在的单体电池不均衡的现象,笔者分析比较了目前的几种均充方法,结合实际提出了无损均充方法,并进行了试验验证。   现有的均衡充电方法   实现对串联蓄电池组的各单体电池进行均充,目前主
[电源管理]
串连蓄<font color='red'>电池组</font>的均充方法研究
基于"飞电容"技术的动力锂离子电池组保护系统
0 引 言 近年来,越来越多的锂离子电池厂家加入到动力锂离子电池的研发队伍中,尽管动力锂离子电池相对于镍氢、铅酸以及镍镉电池在比能量、体积、寿命、环保性等各方面都具有无可比拟的优势,而且它的规模应用也是大势所趋,但电池组的成本、安全性等方面的因素仍然制约着动力锂离子电池市场的扩大。锂离子电池都需要配备电子保护系统,以防止电池出现过充或过放而发生爆炸,但由于各厂家制造动力锂离子电池所采用的材料以及配方均不尽相同,致使电池的过充、过放保护电压多种多样,采用现有的锂电单节或多节保护IC均不能满足如此众多的电压需求。冈此,本文将介绍一种低成本、可靠、适应性广的锂离子电池组保护系统,以解决目前的困境。 1 锂离子电池组保护系统功能
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved