基于UCD92xx 与UCD7xxx 的非隔离数字电源,其输出电压在软启动阶段经常出现“台阶”现象,波形不平滑,尤其是输出电压设定为较低值时,如1.0V。这种“台阶”现象与UCD92xx 软启动的设计原理有关,但完全可以通过一定的措施来优化并最终解决。本文从UCD92xx 的环路和最小占空比宽度两个方向进行优化与分析,最终取得了理想的效果。
1、软启动原理及待优化输出电压波形
数字电源UCD92xx 的软启动是通过对参考电压以步进方式增加来实现的,整个过程是由芯片内部的软件自动完成的。在一款基于UCD9224 和UCD74120 的单板上测试时发现,其输出电压波形在软启动阶段有明显的“台阶”现象,波形不平滑。
1.1 数字电源软启动原理介绍
图1 所示的是数字电源UCD92xx 的功率支路和控制支路。控制支路主要集成在UCD92xx 芯片内部,包含误差生成及模数转换,环路补偿,PWM计算及产生等。其中,参考电压(VREF)电压的设置亦包含在控制支路。
依据软件算法,在软启动阶段,VREF 每100us 增加一次,直至软启动完成,即输出电压达到最终的设定值。例如,输出电压设定为1.0V,软启动的时间设置为4ms,则在软启动阶段输出电压每一次增加25mv,直至达到1.0V。
图 1:数字电源功率级和控制级框图
1.2 待优化的输出电压波形
图2 所示的是输出电压波形,可以观察到在软启动阶段输出电压的波形不够平滑,有明显的“台阶”现象。
该波形是在一款基于UCD9224 和UCD74120 的参考版上测得。主要测试条件为:测试环境常温,输入电压为12V,输出电压为1.0V,输出端带载20A。另外,测试时,数字环路的详细配置见下文2.4 节。
图 2:输出电压波形
1.3 输出电压“台阶”现象的初步分析
图3 所示的是时间轴展开后观察到的输出电压波形。通过测量可知,每经过100us 输出电压增加一次,增加的幅度大约为23mV,与理论计算值25mV 基本一致。
同时也可以观察到,输出电压的每一次增加都是很快的完成,而不是缓慢增加。从功率级支路上分析,这是由于占空比快速增加造成。从控制级支路分析,则原因可以初步归结为环路过快造成的。
图 3:输出电压的步进幅度
2 数字电源模拟前端及环路
数字电源控制环路包含了模拟前端,数字环路补偿等模块,在配置环路时需要综合考虑。其中,数字环路还包含非线性增益模块,使能后可以有效提升整个电源的动态响应性能。
2.1 数字电源模拟前端(AFE)
图4 红色框内电路为数字电源模拟前端(Analog-Front End,AFE)的一部分,其增益可以设置为1,2,4,8 等四个不同的值。设置不同的增益,则ADC 的输出精度也随之不同,比如设置增益为4,则输出精度为2mV;设置增益为1,则输出精度为8mV。
在相同输入误差(VEAP-VEAN)的情况下,不同的AFE 增益值将直接影响环路指标。其影响趋势为,增益越大,环路带宽越宽。
图 4:数字电源的模拟前端
2.2 数字电源环路
图5 所示的是数字电源的环路框图。其中,en是误差放大器的输出,为数字信号;yn是环路的输出,亦为数字信号,输入到PWM模块。KNLR 模块是非线性增益模块,可以使能或禁止,下一节会进行详细分析。a1, a2, b0, b1, b2 是环路补偿的系数,允许用户修改以适应不同的功率级设计。需要说明的是,UCD92xx 内部设计有2 套a1~b2 的参数,分别用于软启动阶段和正常运行阶段。
图 5:数字电源环路框图
2.3 非线性增益
图5 中的KNLR模块即为非线性增益模块,其详细的框图如图6。当en 不超过lim0 时,增益为Gin0;当en超过Lim0 但不超过lim1 时,增益为Gain1;依此类推。非线性增益模块依据误差放大器的输出进行不同程度的放大,可以有效的提升动态响应性能。如果Gain0设置为1,即便使能非线性增益模块,也不会影响环路指标。如果Gain0 由1 修改为0.75 或1.25,则会影响环路指标。其影响趋势为,增益越大,环路带宽越宽。
图 6:非线性增益模块
2.4 数字电源环路配置
图6 和图7 是使用数字电源开发工具Fusion Digital Power Designer 来配置环路的软件截图。该工具可以模拟整个环路并给出配置之后的闭环环路指标,包括截止频率,相位余度和增益余度,极大的方便了环路的调试和优化。
图6 所示的是软启动时的环路配置。零极点的信息在“Linear Compensation”方框中,其中AFE 的Gain 设置为4×;该配置中使能了非线性增益,其Limit 值和Gain 值是允许用户修改的。最终,整个环路的指标为23.87KHz(截止频率),49.33°(相位余度),11.77dB(增益余度)。
图7 所示的是正常运行时的环路配置。零极点的信息在“Linear Compensation”方框中,其中AFE 的Gain 为4×;该配置中使能了非线性增益,其Limit 值和Gain 值是允许用户修改的。最终,整个环路的指标为33. 7KHz(截止频率),50.57°(相位余度),8.77dB(增益余度)。
正是采样上述配置,输出电压在软启动阶段其波形有明显的“台阶状”。下面将尝试放慢环路后,验证是否可以优化软启动阶段的波形。
图 7:软启动环路配置 图 8:正常运行时的环路配置
2.5 优化环路配置
图9 是软启动环路优化后的软件截图。
环路的优化包括:1)不再使能非线性增益,同时将Gain0 由1 修改为0.5;这可以降低环路的低频增益,最终降低环路带宽;2)将AFE 的Gain 由4 修改为1,同样可以降低环路带宽。1 倍的Gain 将使AFE 的输出的精度变差,并最终影响到输出电压,但考虑到软启动阶段对输出电压的精度要求略低,因此可以上述修改可以接受。
需要说明的是,为保证正常运行时输出电压的性能(精度,动态性能等),正常运行时对应的环路参数将保持不变。
图 9:优化软启动环路参数
图10 所示的是优化环路后的输出电压波形,可以观察到在软启动阶段的“台阶”现象消失,波形平滑。
图11 是将时间轴展开后的输出电压波形,可以观察到其步进的时间依然是100us,步进的幅度为24mV(与理论值25mV 基本一致),但每一次的步进不再是突然增加,而是缓慢增加。因此,输出电压波形变得较为平滑。
图 10:优化后的软启动波形 图 11:展开时间抽观察输出电压波形
但是,在图10 所示的波形中可以观察到,输出电压在启动时刻有一个正向过冲并很快回落。严格意义上,该过冲会影响输出电压波形的单调性,在一些应用场景中是不运行的。下文将针对该过冲进行优化。
3 调整最小驱动时间进一步优化输出波形
优化环路后输出电压在软启动阶段变得较为平滑,但会存在一个明显的过冲,需要进行优化。下文通过调整最小占空比宽度来消除该过冲。
3.1 数字电源软启动的kick-start
图12 中所示的是数字电源的输出电压软启动示意图。在开始时刻,输出电压有一个快速的上升,称之为“Kick-start”。 Kick-start 的幅度是根据下面公式计算出的:
Vstart =Vin×DRIVER_MIN_PULSE × Fsw
其中,DRIVER_MIN_PULSE 是指UCD92xx 发出的最小占空比的宽度,允许用户自行设定。
图 12:输出电压软启动
以图10 为例,输出电压Kick-start 的幅度约为185mV。其DRIVER_MIN_PULSE 设置为50ns,理论计算Kickstart的幅度为:12V×50ns×300KHz=180mV。实际值与理论值基本一致。
3.2 调整最小占空比宽度
将DRIVER_MIN_PULSE 由目前的50ns 修改为5ns,以验证其对输出电压的过冲有无改善。图13 即为输出电压波形,可以观察到过冲已经消失,但在起始时刻,输出电压不再平滑。
分析原因可知,当DRIVER_MIN_PULSE 设置为5ns 后,虽然UCD9224 可以发出宽度为5ns 的驱动脉冲,但UCD74120 对最小占空比的宽度有要求,5ns 的宽度不足以使集成在UCD74120 内部的buck 上管导通,从而造成了输出电压上升的不平滑。
图 13:最小占空比宽度修改为5ns 后的输出电压波形
过小的DRIVER_MIN_PULSE 值会使输出电压在起始时刻变得不再平滑;过大的DRIVER_MIN_PULSE 的值则会带来正向过冲。因此,需要找到一个平衡点。
逐步增大DRIVER_MIN_PULSE 的值,当设置为43ns 时,达到了较为理想的平衡点,输出电压的波形如图14所示,输出不再有正向过程,而且在整个软启动阶段输出电压波形都比较平滑。
此时,输出电压Kick-start 的幅度约为160mV。其DRIVER_MIN_PULSE 为43ns,理论计算Kick-start 的幅度为:12V×43ns×300KHz=154.8mV。实际值与理论值基本一致。
图 14:最终优化的输出电压波形
4 结论
通过修改AFE 的增益值和禁止非线性增益等措施优化软启动对应的环路参数后,可以消除输出电压的“台阶”现象,使波形单调平滑上升。正常运行的环路参数无需改动,保证了其较高的带宽,从而使输出电压的精度和动态响应等指标保持不变。
通过优化最小占空比的宽度,可以消除在kick-start 之后的正向过程,使输出电压波形单调平滑。
综上两类优化措施,最终可以使输出电压波形在整个软启动阶段单调平滑。
5 参考文献
1. UCD92xx-Design-Guide, Texas Instruments Inc., 2011
2. UCD9224 datasheet, Texas Instruments Inc., 2010
3. UCD74120 datasheet, Texas Instruments Inc., 2012
上一篇:新型EPS电源工作过程及仿真研究
下一篇:基于在线软件工具的数字电源 UCD92xx 反馈环路调试指南
推荐阅读最新更新时间:2023-10-12 22:22
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- Vicor高性能电源模块助力低空航空电子设备和 EVTOL的发展
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源