利用阻抗跟踪测量技术延长电池运行时间

最新更新时间:2014-01-11来源: 电源网关键字:阻抗跟踪  测量技术 手机看文章 扫描二维码
随时随地手机看文章

如何延长电池的运行时间是电源管理系统面对的最大难题。系统设计师寻找尽可能高效地利用电池电能的方法。他们大多将注意力集中在提高DC/DC转换效率上,由此延长电池运行时间,而往往忽略了与电源转换效率及电池容量同等重要的电池电量监测计精确度的问题。如果电池电量监测计的误差范围是±10%,则为了防止丢失关键数据,系统只能利用90%的电池电能。这相当于损失了10%的电池容量或电池运行时间。

无线接入账户管理、数据处理及医疗监控等许多移动应用对剩余电池容量测量精度的要求很高,以避免因电池耗尽造成突然关机。然而,保证在电池整个生命周期、过温状态或使用负载时的剩余电能的测量精度很困难,终端用户,甚至一些系统设计师都低估了这一点。主要原因是电池可用电能与其放电速度、工作温度、老化程度及自放电特性具有函数关系。开发一种算法来精确定义电池自放电特性及老化程度对电池容量的影响几乎是无法实现的。再者,传统的电池电量监测计要求对电池完全充电和完全放电以更新电池容量,这在现实应用中很少发生,因而造成了更大的测量误差。所以,在电池运行周期内很难精确预测电池剩余容量及工作时间。

本文将介绍如何利用最新的电池电量测量技术一一阻抗跟踪测量技术解决上述难题,文中还将列举单节锂离子电池组解决方案的简单设计案例。

现有电量测量技术存在的问题

锂离子电池容量的下降是电池运行时间缩短的主要原因,这种误解普遍存在。实际上,电池阻抗持续增加(而不是电池容量下降)是导致电池运行时间缩短、系统提前关机的关键因素。在电池充放电100个周期左右的时间内,电池容量仅下降5%,而电池的DC阻抗升高比例却达到一倍或两倍因子级别。老化电池阻抗提高的直接结果是负载电流引起的内部压降增大。结果,老化电池达到系统最小工作电压(或称为终止电压)的时间要远远早于新电池。

传统的电池电量测量技术主要是基于电压和库仑计数算法开发的,在测量性能方面局限性很明显。由于成本低且实现简单,基于电压的测量方法广泛用于手机等手持设备,但使用一段时间后电池阻抗会发生变化,影响该方法的测量精度。电池电压可由下式得出:

 

其中,Vocv为电池开路电压,RBAT为电池内部DC阻抗。从图1可以看出,老化电池的电压比新电池要低,会使系统关机时间提前。 

负载情况及温度的变化会使电池可用容量最多减少50%。大多数终端用户在使用未装配真正电量监测计的便携式设备时,都经历过电池耗尽引起突然关机的情况。另一方面,库仑计数法采取的是另一种方法:通过不间断地进行库仑积分,计算出消耗的电荷量及充电状态(SOC),而全部容量是已知的,因此,可以得到剩余容量值。这种方法的缺点是难以精确量化(model)自放电电量,而且,由于该方法不进行周期性地完整周期校正,导致测量误差随着时间的推移越来越大。这些算法都没有解决电池阻抗的变化问题。为了防止突然关机,设计人员必须提前终止系统运行、保留更多能量,这导致大量电能被浪费。

电池阻抗及化学容量的动态监测

阻抗跟踪(IT)技术非常独特,比现有解决方案更为精确,原因是该技术具有的自学习机制能解决导致电池阻抗及空载条件下化学全容量(QMAX)发生变化的老化问题。阻抗跟踪技术使用动态模拟算法学习并跟踪电池特性,即在电池实际使用过程中,先测量阻抗及容量值,然后跟踪其变化。使用该算法则无需定期进行完整周期容量校正。

利用电池阻抗知识,能够实现精确的负载及温度补偿。最重要的是,通过对电池参数的动态学习,该测量法在电池的整个使用寿命内都能对电量进行精确的测量。与单独使用库仑计数法或电池电压相关法相比,阻抗跟踪技术在测量电池剩余容量方面更加出色。

IT在运行过程中,需要持续对保持电池阻抗(RBAT)与放电深度(DOD)和温度之间函数关系的表格数据库进行维护。了解不同状态下所发生的操作有助于确定何时需要更新或使用这些表格。测量计中,非易失存储器存有多个定义充电、放电、充电后松弛、放电后松弛等状态的电流阈值。停止充电后或停止放电后,"松弛时间"能够使电池电压稳定下来。手持设备开机前通过测量电池开路电压(OCV),然后与OCV(DOD,T)表进行比较的方法确定电池精确的充电状态。当手持设备处于活动状态并接入负载,则开始执行基于电流积分的库仑计数算法。库仑计数器测量通过的电荷量并进行积分,从而不间断地算出SOC值。

总容量QMAX可以通过当电池在充电或放电前后电压变化足够小、处于全松驰状态时的两个OCV读数算出。例如,电池放电前,SOC可由下式得出:

 

电池放电且通过电荷为ΔQ时,SOC可由下式得出:

 

两式相减得出:

 

从等式可以看出,无需经历完全充电及放电的周期即可确定电池总容量。这也省去了电池组生产过程中耗费时间的电池学习周期。

RBAT(DOD,T)表在放电过程中得到持续更新。IT利用该表计算出在当前负载及温度条件下,何时达到终止电压。电池整体阻抗随着电池老化和充放电周期的增加而增加。阻抗可由下式得出

 

有了电池阻抗信息,利用只读存储器中的程序指令包含(inthefirmware)的电压仿真算法就可以确定剩余电量(RM)。仿真算法先算出当前SOCstart值,然后计算出在负载电流相同,且SOC值持续降低的情况下未来的电池电压值。当仿真电池电压VBAT(SOCI,T)达到电池终止电压(典型值为3.OV)时,获取与此电压对应的SOC值并记做SOCFINAL。阻抗跟踪单节电池电量监测计测试结果

阻抗跟踪锂离子单节电池组电路如图2所示。通过BAT2引脚输入端测量电池电压,通过库仑计数器差动信号输入端(SRP及SRN)监测电流。系统利用电量监测计从单线SDQ通信端口获得SOC及运行时间接近结束(Run-Time-to-Empty)等信息。

 

即使在负载变化的情况下,IT电量监测计也能正确预测电池的剩余电量。例如,数码相机处于不同工作模式时,电池的负载也不同。图3显示了IT电量监测计如何精确预测电池剩余电量。剩余电量预测的误差率可小于1%。并且,由于用以预测剩余电量的电池阻抗及老化作用能够得到实时更新,故在电池整个使用寿命内均可保持这种微小误差。

 

阻抗跟踪电池电量监测计综合了库仑计数算法和电压相关算法的优点,实现了更高的电池电量监测精度。在放松状态下测量OCV可以获得准确的SOC值。由于所有自放电活动都在电池OCV降低过程中反应出来,所以无需进行自放电校正。当设备处于活动模式且接入负载时,开始执行基于电流积分的库仑计数算法。电池阻抗通过实时测量得到更新。

关键字:阻抗跟踪  测量技术 编辑:探路者 引用地址:利用阻抗跟踪测量技术延长电池运行时间

上一篇:低损耗LED驱动器通过提高效率、延长电池寿命加
下一篇:基于开关式稳压电源产生EMI原因分析及抗干扰对策

推荐阅读最新更新时间:2023-10-12 22:33

我国电子测量仪器行业应向高端技术发展
近年来我国电子测量仪器行业发展迅速,在若干重大科技领域取得了突破性进展,仪器的可靠性和稳定性有了很大的改观。    产业升级为国内仪器行业带来机遇   近年来我国电子测量仪器行业发展迅速,在若干重大科技领域取得了突破性进展,仪器的可靠性和稳定性有了很大的改观。尤其最近几年,我国本土仪器取得了长足的进步,特别是在通用电子测量设备和汽车电子设备的研发方面,与国外先进产品的差距正在快速缩小。模块化和虚拟技术的发展,为我国的测试测量仪器行业带来了新的发展契机,加上国家和各级政府的日益重视,为电子测量仪器产业提供了前所未有的动力和机遇。   目前国内电子仪器行业已经形成了一批电子仪器开发、生产的骨干企业,研究和开发
[测试测量]
技术前沿 | 革命性突破,85秒测量10根弯管
革命性突破 传统管件测量方式缺点显而易见,测量速度慢,测量时间通常需要数个小时,且数据不够可靠,无法获取管件三维数据,如刹车管之类的细管类产品,更是无法测量。 AICON TubeInspect给弯管检测带来了革命性的突破。具有精度高,测量速度快,可编程更新测量仪,并能够校准弯管机,逆向初始样件,可实现100%的全自动检测,新的TubeInspect光学管件检测系统,提供了客户所需要的全能解决方案。 客户背景 把草图设计变成优质的成品,是瑞典 Proton 工程公司的经营理念。该公司是管道和钣金结构件的一站式供应商,其核心业务是以弯管为主, 这些弯管有不同形状和尺寸,直径在6毫米和150毫米之间,材质包括钢、不
[测试测量]
<font color='red'>技术</font>前沿 | 革命性突破,85秒<font color='red'>测量</font>10根弯管
如何使用相关技术测量相位差
测量两个周期信号之间的相位差通常需要采用诸如气象、计算和通信等方面的科学技术。示波器提供了执行这种测量的快速简单方法。遗憾的是,示波器的噪声、带宽和时间分辨率会限制其测量的精度。 示波器的采样率决定了其时间分辨率的大小。例如对于一个100MHz的信号来说,相位上的1度相当于时间上的27ps。很明显,对于1度的相位测量精度,示波器的采样时间必须小于这个数值,因此采样率要求高于36GHz,这个数字已经超出了大多数示波器的指标范围。为了演示这种测量方法,我们选用了Analog Arts的SA985 USB示波器,这种示波器具有100GHz的采样率和1GHz的带宽。你可以选用满足你应用时间要求的任何示波器开展这种测量。就是有了合适的示
[测试测量]
如何使用相关<font color='red'>技术</font><font color='red'>测量</font>相位差
行业测量技术最佳选择:高精度机器视觉尺寸测量
本文核心提示: 本文主要阐述了机器视觉的基本介绍以及行业应用的最佳选择——高精度机器视觉尺寸测量。   机器视觉,简单的讲,可以理解为给机器加装上视觉装置,或者是加装有视觉装置的机器。给机器加装视觉装置的目的,是为了使机器具有类似于人类的视觉功能,从而提高机器的自动化和智能化程度。   由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及控制信息集成,因此,在现在自动化生产过程中,人们将机器视觉系统广泛应用于成品检测、质量控制等领域。机器视觉系统可以用于检测各种产品的缺陷,判断及其选择,及物体的尺寸测量。   机器视觉系统具有测量功能,能够自动测量产品的外观尺寸,比如外形轮廓、孔径、高度
[模拟电子]
行业<font color='red'>测量</font><font color='red'>技术</font>最佳选择:高精度机器视觉尺寸<font color='red'>测量</font>
压力传感器在无创血压测量中的技术应用
血压(blood pressure,BP)是指血液在血管内流动时作用于单位面积血管壁的侧压力,它是推动血液在血管内流动的动力。在不同血管内被分别称为动脉血压、毛细血管压和静脉血压,通常所说的血压是指体循环的动脉血压,合适的血压是维持人体正常新陈代谢的必要条件。血压作为人体重要的生理参数,是因为血压能够反映出人体心脏和血管的功能状况,因而成为临床上诊断疾病。观察治疗效果、进行预后判断等的重要依据。 在临床医学上关于血压的测量,现代血压监测分为有创监测和无创监测。20世纪60年代,电子压力换能器的出现使有创血压监测技术得以在临床上广泛使用。无创监测可进一步细分为间歇性测量和连续性测量。今天工采网小编就来说说压力传感器在无创血压测量中的
[医疗电子]
压力传感器在无创血压<font color='red'>测量</font>中的<font color='red'>技术</font>应用
集成电路RF噪声抑制能力测量技术
本文描述了一种通用的集成电路RF噪声抑制能力测量技术。RF抑制能力测试将电路板置于可控制的RF信号电平下,该RF电平代表电路工作时可能受到的干扰强度。这样就产生了一个标准化、结构化的测试方法,使用这种方法能够得到在质量分析中可重复的有用结果。这样的测试结果有助于IC选型,从而获得最能够抵抗RF噪声的电路。   可以将被测件(DUT)靠近正在工作的蜂窝电话,以测试其RF敏感度,但是,为了得到一个精确的、具有可重复性的试验结果,需要采用一个固定的测量方法,在可重复的RF场内测试DUT。解决方案是采用RF测试电波暗室,提供一个可精确控制的RF场,其相当于典型移动电话所产生的RF场。   下面,我们对Maxim的一款双运放(M
[模拟电子]
集成电路RF噪声抑制能力<font color='red'>测量</font><font color='red'>技术</font>
便携式产品ESD的测量技术
电子系统的静电放电(ESD)鲁棒性性能测试通常采用IEC 61000-4-2作为标准。这个标准定义了每个电压等级下的冲击电流波形、如何校准ESD脉冲源、用于测量的测试环境、测试通过与失败的判据,此外还提供了如何进行测试的指南。 但在对电子系统进行ESD测试时,人们并不知道被测单元实际能承受多大应力冲击。对在受冲击情况下没有接地的便携式产品来说,这点尤其正确。诚然,在便携式电池供电产品的ESD测试中,测量实际冲击电流是有可能的,甚至还可能通过简单地计算,展示如何从测量中获得额外的信息。 对于小型产品来说,工程师经常在专门的测试环境中执行系统级ESD测试(图1)。对IEC 61000-4-2测试而言,这些测试环
[测试测量]
便携式产品ESD的<font color='red'>测量</font><font color='red'>技术</font>
基于光电技术的脉搏测量方法
1 引言   脉搏测量属于检测有无脉博的测量,有脉搏时遮挡光线,无脉搏时透光强,所采用的传感器是红外接收二极管和红外发射二极管。用于体育测量用的脉搏测量大致有指脉和耳脉二种方式。这二种测量方式各有优缺点,指脉测量比较方便、简单,但因为手指上的汗腺较多,指夹常年使用,污染可能会使测量灵敏度下降;耳脉测量比较干净,传感器使用环境污染少,容易维护。但因耳脉较弱,尤其是当季节变化时,所测信号受环境温度影响明显,造成测量结果不准确。 2 脉搏信号的拾取   脉搏信号拾取电路如图1所示,IClA接为单位 增益缓冲器以产生2.5V的基准电压。   红外接收二极管在红外光的照射下能产生电能,单个二极管能产生O.
[医疗电子]
基于光电<font color='red'>技术</font>的脉搏<font color='red'>测量</font>方法
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved