传统的PWM控制技术多用于两电平电路的驱动控制,其主要方法是正弦脉宽调制(SPWM),调制波为正弦波,依靠三角载波和调制波的比较得出交点实施控制,其电压利用率低,谐波含量大。而随着微处理器技术的发展和多电平电路的出现,涌现出很多新的控制方法,像优化PWM方式、滞环电流控制方式、电压空间矢量控制方式等。其中,空间电压矢量控制通过合理地选择、安排开关状态的转换顺序和通断持续时间,改变多个脉冲宽度调制电压的波形宽度及其组合,达到较好的控制效果。相对SPWM控制,电压空间矢量控制方法电压利用率高、谐波含量小、大大改善了系统的静态和动态性能,具有结构简单、实现容易、控制精度高等特点。本文采用空间矢量控制策略,并对整流电路采用电压外环PI和电流内环PI相结合的控制方法,建立三相电压型PWM矢量控制方案的仿真模型,并对其进行分析研究。
1 三相电压型PWM整流器控制方案
图1为三相电压型PWM整流器空间矢量控制方案图。它是由主电路和控制回路两部分组成,其中,控制回路主要由输入电流和输出电压检测、坐标变换、PI控制器和SVPWM脉冲产生等几部分组成。其原理如下:三相交流电通过三相电压型整流电路变为稳定的直流电压。同时,控制回路对主电路的输入交流电流和输出直流电压进行检测,一方面,将检测值u0与给定值u0*进行比较后送入PI控制调节器,输出值与电流id比较并将其输出送入PI控制器变为电压信号,再经坐标变换送入SVPWM脉冲产生单元,完成电压闭环控制;另一方面,将检测的输入电流经坐标变换与给定电流iq*比较,送入PI控制器变为电压信号,再经坐标变换送入SVPWM脉冲产生单元,完成电流的闭环控制。矢量控制单元通过矢量运算,生成所需要的PWM波,控制双向变换器,达到输出电压的稳定和输入侧交流电流的正弦化。
(1) 主电路模型
主电路仿真模型如图2所示。它主要由输入电源模块、三相整流器模块和一些电压、电流测量单元组成。
(2)控制电路模型
控制电路仿真模型如图3所示。它主要由PI控制器模型、坐标变换模型以及矢量控制器模型等部分组成。其中,坐标变换和矢量控制器仿真模型的建立主要根据矢量控制原理搭建而成,其仿真模型如图4所示。
根据上面搭建的仿真模型,给定仿真参数假定如下:交流输入侧为三相260V交流电压,交流侧电感取3.4mH,直流侧滤波电容为1000μF,给定直流输出电压为650V,开关频率为10kHz,负载电阻为40Ω。在t=0.05s时,突加负载使负载电阻由40Ω变为20Ω。
4 结束语
根据电压空间矢量控制的基本概念和控制方案图,建立三相电压型PWM整流器空间矢量控制的仿真模型,并对每个模块进行详细分析。采用这种控制方案输出直流电压响应速度快,输入交流侧电流波形为正弦波且与输入交流电压相位相同,基本实现了单位功率因数。当突加负载时,整流器输入侧电流幅值变大并有少许的波动,但很快就恢复为正弦波,同时输出侧直流电压降低,但很快也恢复到给定的650V直流电压。通过仿真结果可以看出采用空间矢量控制的整流器具有很好的动态特性和稳定性。
上一篇:四冗余通信板的仿真 少不了CAN总线技术辅助
下一篇:工程师详解测控系统仿真与测控设备软件化技术
推荐阅读最新更新时间:2023-10-12 22:35
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 苹果IronHeart项目曝光:CarPlay将覆盖整个交互界面
- 《新一代汽车供应链痛点研究——车用半导体篇》白皮书正式发布
- 阳极内“死亡区”的发现,或能让高密度硅电池成为现实!
- Microchip发布高精度电压基准IC,为适应更大工作温度范围的汽车应用提供极低漂移量
- 新思科技和达索系统合作 打造业界首个汽车整体照明设计平台
- 线控底盘渗透率将呈几何式增长,传统零部件企业如何向智能化转型?
- 寒武纪明年将推250TOPS算力车载智能芯片,2023年实现上车
- 印度创企研发快速充电技术 5至15分钟就可给电动汽车充满电
- Tsecond推出高速数据传输处理存储设备 可应用于自动驾驶应用
- EMCORE推出新型MEMS惯性测量单元 可用于自动驾驶等领域