基于并联谐振逆变电源控制电路的设计方案

最新更新时间:2014-06-03来源: 21IC关键字:并联谐振  逆变电源  控制电路 手机看文章 扫描二维码
随时随地手机看文章

1 引言

在现代工业的金属熔炼、弯管,热锻,焊接和表面热处理等行业中,感应加热技术被广泛应用。感应加热是根据电磁感应原理,利用工件中涡流产生的热量对工件进行加热的,具有加热效率高,速度快,可控性好,易于实现高温和局部加热,易于实现机械化和自动化等优点。

随着电力电子学及功率半导体器件的发展,感应加热电源基本拓扑结构经过不断的完善,一般由整流器、滤波器、逆变器 及一些控制和保护电路组成。逆变器在感应加热电源中起着十分重要的作用,根据逆变器的特点,本文提出了一种应用于感应加热的并联谐振逆变电源设计方案,针对其主电路、斩波电路及逆变器控制电路等进行了分析和设计。

2 电源系统的总体设计

电源的系统框图为图1所示,三相交流电压通过不控整流及滤波电路后转换为直流电压,该电压被送到直流斩波器进行斩波调节,变为功率可调节的近似恒流源后输入逆变器,之后控制感应加热负载。

 

 

直流斩波控制部分则通过传感器检测斩波输出的电流信号,经PI调节器,控制PWM的输出脉宽,从而改变斩波输出电流的大小,实现闭环控制。逆变器控制部分采用锁相环频率跟踪电路控制逆变器的工作频率,产生高频触发脉冲,驱动逆变电路中功率器件的通断。

2.1主电路设计

并联谐振逆变电源的主电路由三相不控整流桥、直流斩波器、电流源并联谐振逆变器和负载匹配电路四部分组成。如下图2所示。

 

 

这里采用不控整流加斩波构成直流电流源,主要是考虑到其具有保护速度快以及高频斩波带来的滤波器尺寸小等优点。斩波器和逆变器中的主功率器件(VT与 VT1、VT2、VT3、VT4)均采用IGBT管。逆变器桥臂的每一个IGBT上均串联一个二极管,通过IGBT的正向电流也将全部通过串联二极管,这就要求串联二极管能够通过很大的正向电压和承受很高的反向电压,因此VD1~VD4选用的是快速恢复二级管。逆变器通过半导体开关有规律地切换,在负载侧得到一定频率的交流电流,其频率由开关的动作频率决定,由于是电流源供电,逆变器输出电流近似为方波,负载对基波分量呈高阻,压降较大,而三次及三次以上谐波产生的压降较小,可近似认输出电压(即电容C两端电压)为正弦波。

2.2PWM斩波控制电路

斩波的实现是通过控制IGBT(上图2中VT管)的导通来控制电流的大小,从而间接控制功率。在稳态运行过程中,为实时了解负载的变化,需从谐振回路中反馈电流的变化,通过与基准值比较获得占空比的大小。图1系统框图中的电流检测可选用霍尔电流传感器,检测逆变器直流母线输入电流的大小。控制电路采用PI 调节器,由运放与电阻、电容等元件构成,可将检测电流与设定电流比较,只要反馈和设定有偏差,就可通过调节,使反馈向设定值逼近直至等于设定值,从而实现无差调节,提高系统稳定性。 PWM脉宽控制选用TL494,它是一种应用广泛的PWM控制芯片,具有抗干扰能力强、结构简单、可靠性高以及价格便宜等特点。在本设计中具体电路如图3 所示。

 

 

输入(即PI调节输出)自1脚引入,引脚13接低电平,PWM脉冲信号从8脚输出,经驱动模块放大后触发斩波器元件IG- BT的导通。

2.3逆变器触发控制

并联谐振逆变器的触发控制中,为避免大电感Ld上产生大的感应电势,电流必须是连续的,因此要保证逆变器在换流时,VT1、VT3和VT2、VT4两组桥臂应遵循先开通后关断的原则,即要求两组桥臂的触发脉冲有重叠区,这点与串联谐振逆变器有较大不同。图4是逆变器触发脉冲的波形。

 

 

加热工件在加热过程中会引起谐振频率的变化,为使逆变器可靠工作,逆变器需要始终工作在功率因数接近或等于1的准谐振或谐振状态,以实现逆变器件的零电压换流。

 

图5逆变器触发控制电路

图5显示了逆变器触发控制电路的构成。对逆变电源的负载正弦电压采作为锁相环PLL的输入参考电压。考样、过零比较,得到U1(t),虑到触发,驱动电路和开关器件的延时等情况,在PLL内部加入了相位补偿电路,构成无相差锁相环电路。锁相环的输出电由U2(t)产生的 Ⅰ、Ⅱ两路压U2(t)与输入 U1(t)可实现零相位差,驱动输出即可实现图4中逆变器VT1~VT4的触发脉冲波形。

3 IGBT驱动保护电路分析

本电源采用IGBT作为逆变开关和直流斩波器件,虽然具有电流容量大、驱动功率小、开关频率高等优点,但IGBT过流过压能力相对晶闸管较弱,尤其是其承受反压能力更加脆弱。因此IGBT驱动及保护电路性能的好坏直接影响到电源运行的可靠性和高效性。本设计中IGBT的驱动采用日本富士公司EXB系列的 EXB841集成化驱动电路,它适合驱动300A/1200V以下的IGBT,其最高工作频率为40kHz.

 

 

图6为IGBT驱动保护电路,当IGBT在发生故障或调试时出现过电流或短路的情况,可通过EXB841驱动电路内部设有电流保护功能进行保护,EXB841判断过流的依据是检测IGBT的集-射极间的电压,这里在IGBT集电极与EXB841的6脚间串联一个快速恢复二极管 EAR34-10,该二极管正向导通压降为3V,反向恢复时间150ns.可以有效地提高EXB841对过流判断的灵敏度,增强保护能力。为防止IGBT 受外界干扰使栅射电压过高引起器件误导通,尤其是在有上下桥臂的变换器或逆变器中,易造成同臂短路。在栅射极并接一电阻RGE,并在栅射极间并接2只反向串联的稳压管。

在设计中同时还加入了RS触发器:当IGBT发生过流时,EXB841的5脚电平为低,RS触发器的S端变为高电平,输出端Q输出高电平,经过三极管输出的本地过流信号为低,此电平加到与门上可封锁EXB841的输入信号,达到及时撤出栅极信号、保护IGBT的目的。

 

 

一个可封锁EXB841的输入的信号为母线过流信号,如图7所示。当逆变器输出端负载短路、逆变驱动电路工作不正常或换流失败时,均会引起短路过流。通过霍尔电流传感器监视逆变器输入的直流母线的电流,转换成电压信号,送入高速比较器与基准电压相比较,当超过基准电压时,表示有母线有过流情况发生,过流保护动作。比较器输出高电平,三极管导通,则输出为低,实现可靠的过流保护。

4 结语

本文提出的并联谐振逆变电源控制电路设计方案,针对其主电路、斩波电路及逆变器控制电路等进行了设计和分析,方案中所设计的PWM斩波功率调节电路中运用PI调节闭环控制能够提高系统的工作稳定性。经过对逆变器的过流保护分析,比较器输出高电平,三极管导通,则输出为低,可实现在加热过程中负载参数变化时对谐振工作频率的自动跟踪,使逆变器工作在容性近谐振状态,保证逆变器的运行安全。

关键字:并联谐振  逆变电源  控制电路 编辑:探路者 引用地址:基于并联谐振逆变电源控制电路的设计方案

上一篇:隔离式开关电源输出电压方案
下一篇:基于AT89S51的新型家庭语音报警系统设计

推荐阅读最新更新时间:2023-10-12 22:40

基于89C51的摄像镜头控制电路设计
视频监控作为一种远程监测、监控手段,以其信息的丰富性和结果的直观性受到诸多行业的青睐,被广泛应用于自动控制、产品检测、安全监控、信息采集等领域。 1 概述 视频监控作为一种远程监测、监控手段,以其信息的丰富性和结果的直观性受到诸多行业的青睐,被广泛应用于自动控制、产品检测、安全监控、信息采集等领域。其基本工作原理是通过摄像机采集被监视对象的图像信息,并传送到相应的终端设备和控制设备,实现监控功能。在这些系统中,摄像机拍摄的图像质量往往是系统应用效果的决定性因素,因此必须根据拍摄现场的条件对摄像机进行适当的控制。 目前,监控系统中采用的摄像机从结构上主要分为两类,一类是具有内置镜头的一体化摄
[单片机]
基于89C51的摄像镜头<font color='red'>控制电路</font>设计
机车空调逆变电源控制系统及其实现
引言:  随着电力电子学科的发展,逆变器控制技术与工业现场总线应用范围越来越广,本系统成功应用这两项技术,设计了机车空调电源用逆变器控制系统。原有空调电源逆变器控制系统的缺点是:不能根据设定温度控制空调机组变频运行,体积大,各逆变器协调控制困难。本文设计了一种机车空调机组用多逆变器控制系统,与原有空调电源逆变器控制系统相比,有体积小、重量轻、数据交换方便、运行可靠、利于维修等优点。  1 系统工作原理:  由图1可知,上位微机控制电路是该系统的核心控制部分,通过CAN总线将控制指令传给逆变器控制电路,逆变器控制电路根据控制指令产生不同频率的SPWM信号控制逆变器工作;逆变器控制电路将各逆变器实际工作状态、故障
[嵌入式]
水磁无刷直流电机控制电路
主要介绍基于现场可编程门阵列(Field Programmable Gate Array,FP-GA)及EDA方法学的永磁无刷直流电机控制系统的电子电路设计。FPGA是一种高密度可编程逻辑器件,其逻辑功能的实现是通过把设计生成的数据文件配置进芯片内部的静态配置数据存储器(SRAM)来完成的,具有可重复编程性,可以灵活实现各种逻辑功能。 与ASIC不同的是,PCA本身只是标准的单元阵列,没有一般IC所具有的功能,但用户可以根据需要,通过专门的布局布线工具对其内部进行重新编程,在最短的时间内设计出自己专用的集成电路,从而大大提高了产品的竞争力。由于它以纯硬件的方式进行并行处理,而且不占用CPU资源,所以可以使系统达到很高的性能。这种
[嵌入式]
基于AVR单片机的数字正弦逆变电源设计
逆变电源应用广泛,特别是精密仪器对逆变电源性能要求更高。好的逆变电源不仅要求工作稳定、逆变效率高、输出的波形特性好、瞬态响应特性好,还要求逆变电源小型化、智能化、并且具备可扩展性。因此,这里提出一种基于AVR 系列单片机AT90PWM2 的数字正弦逆变电源, 前级SG3525A采用PWM 控制升压电路实现输入和过热保护。后级单片机AT90PWM2 使用单极性倍频SPWM 控制方式进行全桥逆变,且进行输出保护。 1 总体设计及工作原理 逆变电源的系统整体框图如图1 所示,系统的主电路采用前级推挽升压和后级全桥逆变的2 级结构 ,这样可以避免使用工频变压器,有效降低电源的体积和质量,提高逆变效率。其工作原理为
[单片机]
OLED显示模块与AT91RM9200的接口设计
OLED全称为Organic Light-Emitting Diode,即有机发光二极管显示器,是指有机半导体材料和发光材料在电流驱动下而达到发光并实现显示的技术。OLED与LCD相比有许多优势:超轻、超薄(厚度可小于1 mm)、亮度高、可视角度大(可达170°)、由像素本身发光而不需要背光源,功耗低、响应速度快(约为LCD速度的1 000倍)、清晰度高、发热量低、抗震性能优异、制造成本低、可弯曲。所以OLED更能够展示完美的视频,再加上耗电量小,可作为移动电话、数码电视等产品的显示屏,被业界公认为最具发展前景的下一代显示技术。    1 P13501显示模块的特性   台湾铼宝公司推出的P13501是一种128
[电源管理]
OLED显示模块与AT91RM9200的接口设计
多路照明LED调光控制电路的设计与实现
  1 引言   照明技术在过去的一百多年里, 经历了三个重要的发展阶段:白炽灯、荧光灯和HID 灯。LED 由于环保、寿命长、光电效率高等众多优点, 近年来在各行业应用得以快速发展。白光LED 的发光特性有这样的特点:白光LED 发光强度由驱动电流决定。当LED 两端电压发生波动时, 流过发光二极管中的电流变化较大, 而发光二极管的发光强度等比驱动电流, 因此驱动电流的好坏直接影响LED 的发光质量。   很多地方的照明LED 都是多路LED 来共同工作的,并且为了能够实现节能和配合调光消除阴影的目的,需要对多路LED 进行调光,文章给出了一种控制多路调光的方法。   2 整个系统的设计思路   
[电源管理]
多路照明LED调光<font color='red'>控制电路</font>的设计与实现
基于ADN8830的非制冷红外焦平面温度控制电路设计
摘要:这里利用AD公司的热电制冷控制器ADN8830设计出高性能、高稳定性的TEC控制电路。该电路通过简单的电容、电阻构成的外部PID(比例积分微分)补偿网络,能够使探测器温度在10 S内稳定在最佳工作点,温度控制精度可达0.01℃。实验结果表明该方案具有效率高、功耗低、体积小等优点,是一种较好的温控设计方案。 关键词:ADN8830;温度控制;TEC;PID;非制冷红外焦平面阵列 红外技术作为一种发现、探测和识别目标的重要手段在军民两用技术中有着广泛的应用,非制冷红外焦平面阵列技术的发展极大地提高了系统的性能。非制冷红外热像仪采用的是不需要制冷的热探测器焦平面阵列,利用红外辐射使焦平面上敏感像元的温度改变,从而使电
[工业控制]
基于ADN8830的非制冷红外焦平面温度<font color='red'>控制电路</font>设计
电力工具的转矩控制电路
电力工具的转矩控制电路图
[模拟电子]
电力工具的转矩<font color='red'>控制电路</font>图
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved