基于直流电压前馈控制数字逆变电源设计与实现

最新更新时间:2014-09-07来源: 互联网关键字:直流电压  数字逆变电源 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  逆变电源一般采用瞬时反馈控制技术来提高逆变电源的动态响应速度,减少输出电压的谐波含量,改善输出电压波形的质量。常见的逆变电源控制技术,有重复控制、谐波补偿控制、无差拍控制、电压瞬时值控制和带电流内环的电压瞬时值控制等类型。其中,带电流内环电压瞬时值环路的双环控制方法因实现简单,系统动态性能优越和对负载的适应性强等优点,而逐渐成为高性能逆变电源的发展方向之一。但传统控制方法是基于逆变电源直流侧输入电压为无脉动直流电压的假定,而实际逆变电源,存在因电网电压波动或负载突变而导致直流侧电压波动的现象。直流输入电压波动会引起逆变器开环增益波动,进而影响输出电压质量。在传统双环控制的基础上,增加输出电压有效值反馈环的三环控制策略,在一定程度上消除了直流输入电压波动导致的输出电压稳态误差,但有效值环对输出电压变化的响应速度较慢,控制过程复杂。

  此外,正弦脉宽调制逆变电源开关管工作在硬开关状态下,将产生大量的高次谐波,使变换器及负载的损耗加大,设备使用寿命降低,甚至可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。软开关技术是克服以上缺陷的有效方法之一。采用HPWM调制可实现ZVS软开关技术,在不增加硬件和改变变换器拓扑的前提下,可利用现有元器件和开关管的寄生参数,创造逆变桥开关管ZVS软开关条件,从而最大限度地实现ZVS。

  本文针对直流侧电压扰动时双环控制逆变电源的输出电压波形发生畸变、幅值发生变化的现象,提出了通过输入电压前馈控制环来修正基准正弦信号的幅值,从而改善逆变电源输出电压质量的三环控制方法。同时,借助于DSP强大的运算能力和丰富的外设,实现HPWM逆变电源的数字控制,从而简化了硬件电路。仿真结果表明,本文所提出的控制策略简单实用,可有效地提高逆变电源在直流输入电压扰动下的动态性能和稳态精度,并降低了输出电压的总谐波。

  2 逆变电源系统建模

  单相全桥逆变电源的主电路结构如图1所示,直流输入电压Ud经逆变桥后得到脉冲输出电压Ui,再经LC滤波后得到正弦输出电压Uo。

  由逆变桥平均值模型可知:当三角载波频率fc远高于输出正弦波基频f时,逆变桥输出电压Ui在一个载波周期Tc的平均值 ,可近似看成输出电压基波分量的瞬时值Ui1,即

  式中:Ud为直流输入电压;UCm为三角载波幅值。令kPWM=Ud/UCm表示正弦调制信号经过逆变桥的增益,因Ud变化而引起的kPWM变化定义为干扰变量。基于电压瞬时值外环和电容电流内环的双环控制系统如图2所示。电压瞬时值外环采用PI调节,电容电流内环采用P调节。开关频率为20kHz,根据转折频率ωn1=ωc/10、阻尼系数ξ=0.3,可得输出滤波器参数[3]为:L=670μH、C=47μF。控制器的仿真参数为:Kv=0.0015,Ki=0.05,kvp=0.098,kvi=350,kip=20。

  图2 逆变电源双环控制框图

  考虑逆变电源对输入电压扰动的瞬态响应性能,令Uref=0,io=Uo/R,则可得出输出电压Uo对直流电压扰动Δu的传递函数:

  由式(2)可知,系统对直流输入电压阶跃响应的调节时间Ts为5ms。因此,当逆变电源输出电压频率为400Hz时,系统的调节时间持续两个正弦周期,但因响应峰值较小,对输出电压波形不会造成明显影响。而当逆变电源输出电压频率为50Hz时,响应峰值集中出现在1/4正弦周期内,使输出电压波形出现失真。

  3 直流电压前馈控制原理

  由以上分析可知,双环反馈控制逆变器,对直流输入电压变化的调节有一定的滞后性和稳态误差。为此,本文提出用输入电压前馈环实时检测直流输入电压,对逆变桥增益kPWM进行补偿,抵消直流输入电压Ud波动对逆变电源的影响。因此,在传统双环控制系统中,额定直流输入电压U*d除以采样得到的直流输入电压Ud,再与经双环校正的正弦信号ugm相乘后得到调制信号u′gm,将其送入PWM发生器,如图3所示。

  图3 逆变电源直流电压前馈控制原理图

  将调制信号ugm(t)=U′gmsinωt代入(1)式中可得:

  其中:m′=U′gm/UCm即为补偿后的调制比。为了保证直流电压的利用率,系统需要保持很高的调制度,即m接近于1,也即Ugm接近于UCm。

  4 HPWM调制原理

  混合式脉宽调制方式(HPWM)实质为单极性SPWM调制方式,其工作时每半个输出电压周期切换,即同一个桥臂的开关管,在前半个工频周期内工作在低频,而后半个工频周期内工作在高频,从而克服传统单极性控制方式下,总是一个桥臂工作的开关管同时工作在高频状态的缺陷,提高了开关管的使用寿命和系统可靠性。

  逆变电源工作在HPWM软开关方式下的输出电压,在一个开关周期内有12种工作状态。基于输出电压正负半周工作状态的对称性,以输出电压正半周期为例,分析单相全桥逆变电源一个开关周期内的6种工作模态,如图4所示。

  图4 HPWM逆变电源工作模态图

  从t0到t1时刻逆变电源工作在模式A状态下。开关管S1和S4导通,电路为正电压输出模式,滤波电感电流线性增加,直到t1时刻S1关断为止。

  从t1到t2时刻逆变电源工作在模式B状态下。在t1时刻,S1关断,滤波电感电流从S1中转移到C1和C3支路,给C1充电的同时给C3放电。由于C1、C3的存在,S1工作在零电压关断状态下。由于该状态持续时间很短,可以认为滤波电感电流近似不变,等效为恒流源,则C1两端电压线性上升,C3两端电压线性下降。到t2时刻,C3电压下降到零,S3的体二极管D3自然导通,电路模式B工作结束。

  从t2到t3时刻逆变电源工作在模式C状态下。 D3导通后开通S3,所以S3为零电压开通。此时电流由D3向S3转移,S3工作于同步整流状态。电流由S3流过,使电路处于零态续流状态,电感电流线性减小,直到t3时刻减小到零。在此期间,要保证S3实现ZVS,则S1关断和S3开通之间需要死区时间tdead1,并且满足以下要求:

  从t3到t4时刻逆变电源工作在模式D状态下。在此模式下滤波电感Lf两端电压为-U0,电感电流开始由零向负方向增加,电路处于零态储能状态,S3中的电流也相应由零正向增加,到t4时刻S3关断,结束D模式。

  从t4到t5时刻逆变电源工作在模式E状态下。此模式状态与模式A近似,S3关断,C3充电C1放电,同理S3为零电压关断。t5时刻,C1的电压降到零,二极管D1自然导通,进入下一电路模式F,

  从t5到t6时刻,在D1导通后,开通S1,则S1为零电压开通。电流由D1向S1转移,S1工作于同步整流状态,电路处于正电压输出状态回馈模式,电感电流负向减小,直到减小到零。之后,输入电压正向输出给电感储能,回到初始模式A,开始下一开关周期。同理,要保证S1零电压开通,则S3关断和S1开通之间需要死区时间tdead2,同时满足:tdead2>2CeffUd/I0,需要注意的是一般有I1>I0,因此得出tdead2>tdead1。

  5 仿真实验结果分析

  利用Matlab/Simulink对本文设计的逆变电源电路进行了仿真验证,并采用上述原理,研制了实验样机以验证方案可行性。参数如下:直流输入电压Ud为400V±20%,额定输出电压Uo幅值为310V,输出功率1kVA,三角调制波频率为10kHz,幅值为1V,调制比0.8,THD 。

  图10为当输出50Hz交流时,Ud波动的情况下,传统双环控制逆变电源和本文研究的逆变电源的输出电压波形。由图10可以看出,传统双环控制,因控制器调节较慢而导致输出电压波形失真,而本文研究的逆变电源输出电压波形保持良好,明显提高了系统对直流输入电压扰动的瞬态响应性能。

  (a)

  (b)

 

  图5 直流电压波动后的输出电压波形:(a) 传统双环控制;(b) 前馈电压控制

  实验测得开关管1和开关管4的驱动波形如图6所示。由图可以看出,开关管工作在HPWM调制方式

  阻性半载下输出电压波形如图7所示,阻性满载下输出电压波形如图8所示。由图7和图8可以看出,负载从半载到满载变化时,输出电压的失真度较小,输出电压的幅值变化不大,系统具有良好的稳压输出。

  图7 阻性半载下输出电压波形

  图8 阻性满载下输出电压波形

  6 结论

  在深入分析传统双环控制逆变电源对直流输入电压扰动响应性能的基础上,提出了利用输入电压前馈控制环来消除直流输入电压波动对逆变电源性能的影响。本文利用DSP芯片的强大功能,实现了数字式HPWM逆变电源的设计,采用HPWM的控制方式以不对称规则采样法,有效地抑制了系统的谐波分量;同时4个开关管分别实现了软开关控制,降低了开关损耗,提高了电路效率。仿真实验结果证明,加输入电压前馈补偿环的逆变电源对直流输入电压扰动有很好的静态和动态性能。

关键字:直流电压  数字逆变电源 编辑:探路者 引用地址:基于直流电压前馈控制数字逆变电源设计与实现

上一篇:分析信电源散热主要方法及优缺点
下一篇:通过驱动器IC集成的负载及输入检测机制来管理能耗

推荐阅读最新更新时间:2023-10-12 22:45

通常直流电压表丈量电路图解
电量丈量中的许多电参数,包含电流、功率、信号的调起伏、设备的灵敏度等都能够视作电压的派生量,经过电压丈量取得其量值。 电压的丈量可分为模仿和数字两种办法。前者选用模仿式电压表显现丈量成果,后者选用数字电压表即以数字显现器显现丈量成果。两者的差异仅在于后者用A/D变换器和数字显现器替代了前者的模仿显现电表有些。两者前端有些的作业原理根本一样。模仿式电压表的长处是构造简略,报价廉价,丈量频率规模较宽;缺陷是精度、分辨力较低,不便于与计算机构成主动测验体系。数字式电压表则恰好相反。 (1) 图1 通常直流电压表电路
[测试测量]
通常<font color='red'>直流</font><font color='red'>电压</font>表丈量电路图解
基于数字电位器的直流电压信号系统的设计
研究了一种基于数字电位器MAX5160的直流电压信号系统。通过按键输入期望的直流电压值,然后由微处理器ARM1138根据该数值对数字电位器进行控制,可以得到多级直流电压信号,并使该系统的最大误差为0.02V、电压信号范围为0~4.98V且精度为0.0112V。实验表明:所设计的直流电压信号系统具有灵活、方便、可靠测试的特点,并可输出多级直流电压信号。 1 引言 电子设备测试中广泛应用直流电压信号"人们要求产生这种信号的系统具有灵活、方便、可靠测试的特点。 目前,许多直流电压信号系统采用通过D/A器件产生直流电压信号的方法,由于测试时较死板、烦琐,并且需要经常校准"因此影响了电子设备的测试效率。 本文介绍了一种方法以克
[电源管理]
基于<font color='red'>数字</font>电位器的<font color='red'>直流</font><font color='red'>电压</font>信号系统的设计
万用表测量直流工作电压的方法
万用表测量直流工作电压的方法 这是一种在通电情况下,用万用表直流电压挡对直流供电电压、外围元件的工作电压进行测量;检测IC各引脚对地直流电压值,并与正常值相比较,进而压缩故障范围,找出损坏的元件。 测量时要注意以下八点:   (1)万用表要有足够大的内阻,至少要大于被测电路电阻的10倍以上,以免造成较大的测量误差。 (2)通常把各电位器旋到中间位置,如果是电视机,信号源要采用标准彩条信号发生器。 (3)表笔或探头要采取防滑措施。因任何瞬间短路都容易损坏IC。可采取如下方法防止表笔滑动:取一段自行车用气门芯套在表笔尖上,并长出表笔尖约0.5mm左右,这既能使表笔尖良好地与被测试点接触,又能有效防止打滑,即使碰上邻近点也不会短路。
[测试测量]
PWM技术实现方法综述
引言 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现
[应用]
如何扩大直流电压表的量程?
一般直流电压表是根据磁电式仪表的测量原理制成的,这类仪表的内阻很小,允许通过的电流也很小。所以,它的两端也只能加很小的电压,不能直接测量较大的电压。为了扩大电压表的量程,一般采用分压电阻RF与测量机构串联,其接线方法如图3-8所示。程扩大的范围取决于串联分压电阻 RF的大小,电阻越大,可测量的直流电压越高。
[测试测量]
如何扩大<font color='red'>直流</font><font color='red'>电压</font>表的量程?
万用表直流电流和电压测量电路工作原理
1、直流电流测量电路工作原理 指针式的主要元件是一只磁电系电流表,通常称为表头。但一只表头只能测量小于它的灵敏度的电流。为了扩大被测电流的量程,就需要给它并上分流电阻,使流过表头的电流为被测电流的一部分从而扩大量程。为了在测量大小不同电流时得到一定的精确度,电流表都是设计成多档量程的。 应用最多的是闭路抽头式分流电路,其电路如图1所示。图中r1~r5统称为总分流电阻rs,实际产品中,为了便于调整和成批生产,总分流电阻rs大多采用较大的整数千欧的阻值,表头上再串联一只可变线绕电阻r0,当表头参数有变化时仍可以得到补偿并方便调整。 图1 直流电流测量电路 2、直流电压测量电路工作原理 根据欧姆定律u=ir,则一只灵敏度为i、内
[测试测量]
万用表<font color='red'>直流</font>电流和<font color='red'>电压</font>测量电路工作原理
万用表测直流电压
—般万用表均有0.25〜1000V的直流电压测量多个挡位,此外还大多设置2500V高压插孔。 1.测量方法 测量直流电压,比测量直流电流方便许多。测量电流需断开电路将万用表串入电路才能测量,而测量电压时不必改动电路,只要将万用表并联在被测电路两端点上即可。测量直流电压要注意正负极不要接反,并且量程要选择合适。在未知被测电压值时,可先用较大量程测量。如果指针偏转角度很小,说明被测电压很小,应改换适当的挡位进行测量。 如果未知被测电压的极性,且不知万用表红、黑两表笔应当接触的位置,可用万用表的最高直流电压挡(1000V挡)试探性地测两点间的电压,要注意观察表笔刚接触被测点时万用表指针摆动的方向。如果指针向右摆动,说明万用表红表笔接触
[测试测量]
万用表测<font color='red'>直流</font><font color='red'>电压</font>
如何使用直流电压表测量电压
直流电压表接线前要搞清电压表的极性,通常,在直流电压表的接线柱旁边标有“+”和“一”两个符号,接线柱的“+”(正端)应与被测量电压的高电位连接;接线柱的“一”(负端)应与被测量电压的低电位连接,其接线方法如图3-7所示。正负极不可接错,否则仪表指针就会因反转而损坏。
[测试测量]
如何使用<font color='red'>直流</font><font color='red'>电压</font>表测量<font color='red'>电压</font>?
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved