TL431在开关电源中的运行原理及其典型应用

最新更新时间:2014-09-20来源: 互联网关键字:TL431  开关电源 手机看文章 扫描二维码
随时随地手机看文章

  本篇文章主要对TL431在开关电源当中的应用和电路运行原理进行了介绍,并对典型电路进行了分析,并给出了TL431电路的检测方法。希望大家通过这篇文章能够进一步了解TL431在开关电源当中的使用。

  在早期的开关电源当中,组成取样的工作主要由三极管和二极管来完成。但是由于它们在参数上差别比较大,会为调试造成一定的阻碍。现如今,随着技术的进步,开关电源逐渐放弃了老旧的三极管和二极管,转而采用三端精密稳压源来进行取样和误差检测。而三端精密稳压源当中的经典,就非TL431莫属了。

  在三端精密稳压器内部有温度补偿的高精度并联放大器,其内部基准电压精度非常高,所有产品的典型值均为2.495V,而其误差电压范围允许为2.44~2.55V,允许工作温度范围用尾缀字母表示,C为-10~85摄氏度,I为-40~85摄氏度,M为-55~125摄氏度。所以,无论是精度还是稳定度均非普通稳压二极管所能达到的。

  在使用TL431进行设计时,我们要注意,为了让TL431内部的放大器处于线性区,要让Uka=Uref。Ika大于1mA,内部放大器的电压小于37V,其最大功耗为500mW~1W。一般开关电源中的误差放大器,功耗是不可能达到500mW的。TL431的用法很多,如果将R端与K端连接,即等效一只2.5V/100mA的高精度稳压二极管。另外,TL431还可以组成2.5V~36V的可调并联稳压电源。由TL431组成的取样电路,由于其内部比较器具有极高的增益,在使放大器动作时,取样电路仅需输入4微安以下的电流即可,因此对取样分压器的影响极小。

  

  TL431在开关电源当中取样和误差放大的典型应用电路图如上图所示。开关电源输出电压Uo由R1、R2分压,正常时得到2.5V的取样电压,送到TL431的控制端R。因为R端电流极小,可以忽略,因而R1、R2的取值可以按输出电源Uo与2.5V之比选取,即Uo=2.5*(1+R1/R2)。当Uo上升时,R端电压升高,Ika增大,光耦合器发光二极管电流也增大,通过光耦合器次级控制开关脉冲的脉宽减小,输出电压降低,起到了稳定输出电压的作用。TL431和光电耦合器的工作电压为Ui,一般取自开关电源5~12V稳压电源,R3则限制TL431的电流Ika,使光电耦合器工作在线性区内。由于TL431的比较器和放大器增益都较高,使用中常在K-R极之间接入RC电路,以防止寄生振荡。

  

  在我们想要对TL431的电路进行检测时,使用传统的电阻法是无法准确判断出好坏的。因为三端精密稳压器为集成电路,等效电路只是示意其内部功能,实际内部电路较为复杂。当开关电源出现失控或无输出电压故障时,如果怀疑取样误差放大器发生故障,可根据上图中的电路检测TL431。Ui选择小于35V的直流电压,R1将电路短路电流限制在100mA以内,R2、R3为控制极供电调整,选择R3/R2+R3大于或等于2.5。当调整R3时,Uo能在2.5V~Ui之间均匀变化,则判断三端精密稳压器TL431完全正常。

关键字:TL431  开关电源 编辑:探路者 引用地址:TL431在开关电源中的运行原理及其典型应用

上一篇:Linux2.6内核中最新电源管理技术分析及未来发展
下一篇:常见的三种LED调光电源分析

推荐阅读最新更新时间:2023-10-12 22:45

基于TOPSwitch-GX系列的多输出开关电源
1 引言   多路输出开关电源广泛应用在各种复杂小功率电子系统中,就多路输出而言,通常只有输出电压低、输出电流变化范围大的一路作为主电路进行反馈调节控制,以保证在输入电压及负载变化时保持输出电压稳定,由于受变压器各个绕组间的漏感和绕组电阻等的影响,辅助输出电压随输出负载的变化而变化,通常,当主输出满载和辅助输出轻载时,辅助输出电压将升高,而当主输出轻载和辅助输出满时,辅助输出电压将降低,这就是多路输出的负载交叉调整率问题,笔者基于 TOPSwitch-GX系列设计了一种多路输出开关电源,很好的解决了多路输出的负载交叉调整率问题,该电源在各种工况下都能稳定输出,主输出电压纹波小于3%,各路辅助输出纹波小于5%,负载交叉调整率
[应用]
基于DSP的智能功放开关电源设计
   1 引言   开关电源以体积小,重量轻,功耗低,效率高,纹波小,噪声低,智能化程度高,易扩容等,逐渐替代工频电源,广泛应用于各种电子设备。高可靠性、智能化及数字化是开关电源的发展方向。音响功放要求电源随着负载变化自动调整输出电压,进而调节功率,以提高电源动态性能,降低音响功放内部损耗,但目前的开关电源无法实现。选用TMS320F2812型DSP作为功放开关电源的主控制器,设计一种低功耗。适用于大型功放系统的新型的智能功放开关电源。    2 智能功放开关电源设计   图1为智能音响功放开关电源的总体原理框图,主电路采用交一直一交一直的结构。输入工频220 V交流电路经滤波电路后,再经单相桥式整流电路输出直流
[电源管理]
开关电源安规内容
开关电源安规主要内容 1. 安全距离规范 2. 耐压测试规范 3. 绝缘测试规范 4. 温度测试规范 5. 过载测试规范 6. 元器件(部分)短路测试规范 7. 安规器件选定 一. 安全距离规范 (针对初, 次级及高压, 大电流区域PCB布板) 1. 交流输入L - N, N- GND, L- GND间距必须大于 3.5毫米. 2. 初级整流滤波电容正, 负级间距须大于4毫米. 3. 初, 次级间距须大于6毫米(光耦处间距最小). 4. 次级电路电压小于48V的区域布板时一般不作安全间距要求. 注: 电气间隙与爬电距离应符合相关要求.
[电源管理]
由TEA1522T构成的3W精密开关电源电路
由TEA1522T构成的3W精密开关电源电路如图2所示。当配80~276V交流电源时,最大输出功率可达7W。与图1所示电路相比主要有以下区别: 图2 由TEA1522T构成的3W精密开关电源电路 1)电路中增加了由可调式并联稳压器(TL431)和光耦合器(SFH6106-2)组成的光耦反馈式电路; 2)输出级采用两级滤波器,第一级滤波器由C3构成,第二级滤波器由L2、C4构成,亦称后置滤波器,可进一步滤除纹波电压; 3)在UCC-REG端之间并联一只反向击穿电压为22V的1N6008B型稳压管,一旦UCC 22V,可起到钳位保护作用。 一次侧的钳位保护电路由VDZ1和VD1所组成
[电源管理]
由TEA1522T构成的3W精密<font color='red'>开关电源</font>电路
为便携设备供电的创新型双输出LDO电源解决方案
引言 在现代应用中,传统的低压降稳压器(LDO)正逐渐被开关电 源(SMPS)所取代。虽然LDO是一个成本低廉而且强固耐用的电源解决方案,但是它耗电很大。越来越多的便携设备厂商,像数码相机、手机、PDA制造 商,都在研究用效率更高的解决方案取代LDO的可行性。开关解决方案的大小,即电源的物理尺寸,通常是这些厂商无法逾越的障碍。 STw4141是一个创新的开关电源,只使用一个外接线圈就能产生两个独立的输出电压。因为其内在的开关特性,这个芯片的效率很高,而且所需的外部组件数量极少。该产品的效率可以与两个独立的开关电源媲美,尺寸相当于两个独立的LDO电源。因此,能够取代便携设备中的线性电源,或者缩减开关稳压器的物理尺寸和成本。
[嵌入式]
开关电源的PCB设计规范
在任何 开关 电源 设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成 电源 工作不稳定。特别是面临如今性能强大的 开关 稳压器和电源越来越紧凑,开关电源的开关频率越来越高。这使得PCB的设计越来越困难。本文就这一难题提出一些建议,希望对 电子 设计师们有所帮助。   考虑一个将24V降为3.3V的3A开关稳压器。设计这样一个10W稳压器初看起来不会太困难,设计人员可能很快就可以进入实现阶段。不过,让我们看看在采用Webench等设计软件后,实际会遇到哪些问题。如果我们输入上述要求,Webench会从若干IC中选出“Simpler Switcher”系列中的LM25576(一款包括3
[电源管理]
<font color='red'>开关电源</font>的PCB设计规范
移相全桥高功率软开关电源自动转换方案设计
在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的 电镀电源 一般都采用晶闸管相控 整流 方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。   本文介绍的电镀用 开关电源 ,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW。由于采用了ZVT软开关等技术,同时采用了较好的 散热 结构,该电源的各项指标均满足用户的要求,已小批量投入生产。   1  主电路的拓扑结构    鉴于如此大功率的输出,高频逆变部分采用以 IGBT 为功率开关器件的全桥拓扑结构,整个主电路如图1 所示,包括:工
[电源管理]
移相全桥高功率软<font color='red'>开关电源</font>自动转换方案设计
开关电源的软起动电路
1 引言   开关电源的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(如图1所示),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。为此几乎所有的开关电源在其输入电路设置防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。 图1 合闸瞬间滤波电容电流波形    2 常用软起动电路   (1)采用功率热敏电阻电路   热敏电阻防冲击电流电路如图2所示。它
[电源管理]
<font color='red'>开关电源</font>的软起动电路
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved