浅谈智能化锂离子电池管理系统的设计与实现

最新更新时间:2014-09-24来源: 互联网关键字:智能化锂离子  电池管理 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  现代的移动通信设备越来越重视移动设备电源问题。移动电源的核心问题是可充电电池的管理问题,由于电池的管理与电池的化学特性密切相关,不同种类的电池具有不同的充电和使用特性,即使相同种类电池,由于采用电池材料特性不同,对充电和使用要求也不相同,因此使电池自己实现智能管理是电池用户的迫切要求。为解决电池的使用问题实现电池的“即插即用”,智能电池开始得到广泛应用,国际上一些着名的电池公司均开发了针对自己电池特性的智能电池体系。

  目前电池实现智能化的途径有两种,一种是采用一些专用的集成电路来实现,一种是采用集成了模拟模块的单片机来实现。专用集成电路的方案存在以下缺点:只针对一种电池和一类电池的特性,电气接口和制式不统一,有的专用集成电路已跟不上电池技术的发展。本文采用的是单片机方案,实现对采用锂钴材料体系生产的18650电池的智能化管理,同时考虑未来电池技术的发展,并借鉴了智能电池技术成熟应用,选用了SMBus1.1做为智能电池数据通信接口,该方案具有通用、可扩展、易升级等特点。

  2 系统构成及其主要功能

  

  系统构成原理框图如图1所示。

  本系统采用Motorola68HC908单片微处理器(简称MCU)对4节串联的18650型锂离子电池进行统一管理。该MCU具有12K闪速内存贮器,可在线擦写10万次。具有14路A/D 10位的信号采集口,两路增益可编程运算放大器,具有SMBus1.1接口和低功耗工作模式,可以方便实现多路模拟信号的采集和按SMBus1.1协议实现数据通信功能,另外该系列MCU在设计上具有完善的电磁兼容防护措施,具有抗干扰能力强,可靠性高的特点,可广泛应用到电力电子、汽车控制、及军工领域,可以实现对镍氢电池、镉镍电池、锂离子电池的智能控制,满足智能化电池的设计使用需求。在本方案中,通过MCU与电池组互连的方式使智能电池主要具有以下功能:

  供电功能

  当智能电池与用电器对接时,将自动唤醒MCU控制电池给用电器供电。另外也可与智能化充电机、手摇发电机一起为用电器浮充供电。

  充电功能

  通过智能充电器给智能电池充电,它们通过SMBus总线互连进行信息交换。锂离子电池充电一般分两个阶段,首先进行恒流充电,当电池电压达到一定值时改为恒压充电。因此MCU要不断的监测电池组电压,实现对充电电压的控制。

  通信功能

  电池与用电器、智能化充电机能够相互传送各自所需的固定信息、动态信息及告警信息。其中固定信息包括:电池厂商信息(生产厂家、生产日期、生产批号)、电池的化学成份、额定电压、额定容量、规范信息、名称等信息。动态信息包括:剩余容量、满充容量、电池模式、温度、温升、充电电压、充电电流、循环次数、剩余工作时间、电池状态(告警)等信息。

  另外智能电池还具有剩余容量LED显示、自动保护等功能。

  3系统硬件电路设计

  3.1信号的采集

  在本系统中,MCU采集的信号有电压信号、电流信号和温度信号。采集的方法如下:

  电压测量

  电压的测量采用电阻分压取样测量电压,通过测量分压电阻的电压值来测量电池组端电压,电阻分压比1:7, 电阻精度:±0.5%。其中分压电组的电压值采样通过MCU内部10Bit ADC 完成。

  电流测量

  电流的测量采用精密电流采样电阻测量电流。在电池组的负极串联一个20毫欧精密电阻,通过测量这个电阻的电压降来测量工作电流,电阻精度为0.5%。精密电阻两端电压的测量也是通过MCU内置的ADC采样完成。

  温度测量

  温度的测量采用负温度系数的热敏电阻测量温度,通过测量热敏电阻的阻值来测量电池温度,热敏电阻阻值精度为1%。热敏电阻应紧贴电池表面,每两只电池共用一只热敏电阻。

  3.2均衡保护电路的设计

  锂离子电池充放电过程中需监测每节电池的电压。因为在同一电流充放电中串联的4节电池的电压升降可能不会完全相同,这将会导致某一电池的过冲或过放,因此要增加电池均衡电路,使4节串联的电池电压大小在一定误差范围内保持时刻一致。在本方案中,利用MCU的I/O口来控制运算放大器,使电压变化较快的电池通过三极管短暂充放电来完成。

  3.3保护开关的设计

  保护开关选择功率MOS管作为充电和放电保护开关,MOS管选择为IRF4905。IRF4905S导通电阻为5毫欧,电流为60 A。通过MCU的I/O口来控制MOS管的导通和截止。由于I/O口的功率有限,因此本系统中在I/O口和MOS管中增加了三极管驱动电路。

  3.4系统低功耗设计

  对于需要连续供电的器件应选择较低漏电流的器件。稳压电源选择TPS71533,运算放大器选择低功耗运放。测量电路设计了开启和关闭的开关,在不需测量的状态下,采样电路关闭,以减少电能的损耗。在控制上选用低功耗控制策略。智能电池在充电过程、给用电器供电、显示按键按下时,MCU工作在Run 模式和Wait模式下,其余时间工作在STOP模式下,MCU工作在STOP模式时,要关闭电压测量、温度测量电路以降低电池能耗。从Stop模式进入 Run模式,需外界条件唤醒。唤醒方式采用显示按键唤醒方式、电流唤醒的方式。当显示按键按下时,CPU即由Stop模式进入Run模式;当有电流流过采样电阻时,CPU由Stop模式进入Run模式。Run模式下,10分钟内没有事件发生,MCU自动进入Stop模式。

  4系统功能方案及软件设计

  4.1功能方案

  4.1.1电池保护管理

  智能电池管理电路在电池的使用过程中,实时监控电池的电流、电压、温度、容量。智能电池管理系统通过计算,对锂离子电池实现下列保护:

  (1)充电时,当总容量超过电池规定的最大容量,充电过程中温升大于3℃/2min,充电温度≤ -20℃、≥+55℃,向智能化充电机提供告警信息,并自动切断充电输入。另外当有一个单体电池电压超过4.25V,向智能化充电机发出告警信息,并能自动切断充电输入。

  (2)放电时,智能管理电路通过对电压、电流测量及上次充电过程数据记录,防止电池过放电损坏。当智能管理电路发现电池继续放电会造成过度放电时(单体电池电压≤2.5V),智能电池发出告警信息并关闭放电输出。

  4.1.2温度管理

  温度、温升对电池的影响是不能忽视的。在使用过程中异常的温升需特别对待,特别是充电过程中大于3℃/2min的异常温升需要采取保护措施。另外温度对电池的剩余容量有显着的影响,温度是剩余容量计算、供电时间预测的重要的修正参数。

  智能电池采用多点测温对电池进行温度管理,识别电池组温度,单体电池的异常温升,环境温度巨变。智能电池按以下规则识别:

  (1)充电过程中2个测温点温度值相差不到2℃,连续的温度变化率相差不超过2℃,判别为电池组温度。其它智能设备读取的电池温度为所有测温点的平均值。

  (2)充电过程中在电池充电容量加上起始剩余容量之和大于70%额定容量时有一个测温点的温度变化率超过3℃/2min,判别为充电异常温升。

  (3)智能电池被充电唤醒后电池组温度(平均温度)变化率超过3℃/2min需试验确定,判别为环境温度巨变。

  智能电池在充电的过程中,环境温度在低于电池温度-20℃情况下电池组不允许充电,-20℃~+10℃ 不允许大电流充电,+10℃~+55℃允许大电流充电,在+75℃以上不允许充电。

  4.1.3容量的计算的方法

  容量计算的基础是测量的电流对时间的积分,计算公式为:

  Q=∫i dt

  由于68HC908单片机内部的ADC采用了∑—⊿方式,转换速度很快,以累加的方式可以实现精度较高容量计算。

  4.2系统软件设计

  智能电池管理系统软件是被写入到68HC908的FLASH 中,经过电路处理电池的电流、电压、温度模拟信号转换成数据,根据这些数据结合电池的特性,完成系统功能方案指定的功能并且可以向与智能电池和电台提供相关电池的信息。软件的硬件平台是68HC908单片机,软件的开发平台为68HC908集成开发环境。程序结构框图如图2所示:

  

  另外,智能电池提供统一的智能接口,这些智能的接口可以通过SMBus1.1协议进行访问。智能充电机、用电器可以采用相同的总线技术按照 SMBus1.1规范的协议简单、方便地访问这些接口。智能电池提供的这些接口能满足用电器及充电机向系统化、统一化、智能化方向发展要求。用电器、充电机通过读取这些信息可以知道智能电池制造、使用的全过程信息及电池当前使用的状况。

  5结束语

  本文给出了一套智能电池管理系统开发方案,阐明了管理系统的功能和实现方法。采用低功耗的设计思想,确保电路的自耗电满足电池存储的需求。充分利用 68HC908系列单片机丰富的对外接口控制功能,利用SMBus总线为用电器和智能化充电机随时提供所需的各种信息。本系统方便了用户,减少了操作,实现了智能化、一体化设计。

关键字:智能化锂离子  电池管理 编辑:探路者 引用地址:浅谈智能化锂离子电池管理系统的设计与实现

上一篇:内部构造大解析,让你彻底了解移动电源
下一篇:基于功率MOSFET的锂电池保护电路设计

推荐阅读最新更新时间:2023-10-12 22:46

ADI AD7280A1主要特性及15通道锂电池管理模块BMU基本功能
    ADI公司的15通道锂电池管理模块主要采用AD7280A,AD8280,ADuM5401,ADuM1201, ADuC7026和AD8601,实现了对15个锂电池单体的电压和温度监测,在保证信号监测精度的同时,提供了主监测电路和次级监测电路的架构,实现更高级别的系统保护。还提供了模块化可扩展的板级架构,除主监测电路模块,次级监测电路模块,数据接口模块外,可扩展主动均衡电路等其他模块,方便系统原型开发。本文介绍了AD7280A1主要特性,框图和应用电路,以及15通道锂电池管理模块BMU基本功能,框图,电路图,材料清单和PCB元件布局图和设计图。   The AD7280A1 contains all the funcTI
[汽车电子]
深度分析SOC精度验证方法
大家都知道电池管理系统(BMS)的核心是上层应用算法,算法的核心是SOC估算。所以,国标QC/T897-2011《电动汽车用电池管理系统技术条件》自然要着重描述荷电状态(SOC)的精度测试。这可以从其总共13页的的文件中有长达6页是与SOC精度有关的中可以看出。国标对SOC估算精度的要求是误差要不大于10%。不过,国标给出的验证方法存在以下问题: 1、国标只要求测试2个点的SOC精度 国标中提出,只要在SOC大于80%和小于30%的区域各找一个点测试。我认为这是远远不够的。难道2个点精确就能够保证所有工作点都满足要求了,显然不是。 我在为美国BIG3写验证方法设计验证计划和报告(Design Verification P
[嵌入式]
基于单片机的动力电池管理系统的硬件设计
电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统 。 1 电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检
[单片机]
基于单片机的动力<font color='red'>电池管理</font>系统的硬件设计
浅谈智能化锂离子电池管理系统的设计与实现
  1 引言   现代的移动通信设备越来越重视移动设备电源问题。移动电源的核心问题是可充电电池的管理问题,由于电池的管理与电池的化学特性密切相关,不同种类的电池具有不同的充电和使用特性,即使相同种类电池,由于采用电池材料特性不同,对充电和使用要求也不相同,因此使电池自己实现智能管理是电池用户的迫切要求。为解决电池的使用问题实现电池的“即插即用”,智能电池开始得到广泛应用,国际上一些着名的电池公司均开发了针对自己电池特性的智能电池体系。   目前电池实现智能化的途径有两种,一种是采用一些专用的集成电路来实现,一种是采用集成了模拟模块的单片机来实现。专用集成电路的方案存在以下缺点:只针对一种电池和一类电池的特性,电
[电源管理]
浅谈<font color='red'>智能化</font><font color='red'>锂离子</font><font color='red'>电池管理</font>系统的设计与实现
基于LTC6801的电池管理系统 (BMS) 的故障监视
 本文将阐述如何通过使用 LTC6801 故障监视 IC,提高一种高压锂离子电池组的长期可靠性。在电动型汽车、不中断电源、医疗仪器甚至电动工具等应用中,用电池作电源是一种持续不断的发展趋势,这些应用每种都有不同程度的可靠性预期。    长寿命电池电源面临的挑战   对于电动车和大量其它类型的便携式设备来说,电池已经成为一种主要的非传统能源。锂离子电池非常受欢迎,因为与具有相同能量密度的其它化学组成的电池相比,锂离子电池的能量密度允许锂离子电池组更小、更轻。对于大功率应用来说,如电动型汽车,需要叠置数百个电池以形成一个高压电源,这种电源产生更小的电流,可使用更细和重量更轻的导线。在这类汽车应用中,驾驶员的安全是第一位
[电源管理]
基于LTC6801的<font color='red'>电池管理</font>系统 (BMS) 的故障监视
利用自动主机反向唤醒技术节约蓄电池能量
越来越多的电动汽车,需要实现最高水平的功能安全与高精度电池监测。为了提高电池监测的准确性,车辆的电池管理系统必须有效地实时工作,以监测内部单个电池的性能。 在典型的混合动力汽车和电动汽车中,电池管理单元(BMU)由12伏电池供电。即使在停车或熄火的情况下,此电池也会保持工作,以支持遥控钥匙、汽车安全防盗和电池监控等功能。当汽车停止时,为了确保电池正常工作,微控制器(MCU)必须定期唤醒,以查找高压电池组中的故障。这种周期性唤醒会消耗电流,并可能过早地消耗完12伏电池电量。 设计工程师和汽车制造商现在可以考虑一种新的自动主机反向唤醒功能,使主机MCU关闭,而依赖电源管理集成电路(PMIC)保持低功耗模式,从而节省12伏蓄电池
[电源管理]
利用自动主机反向唤醒技术节约蓄电池能量
基于DSP和OZ890的电池管理模块电路设计
  本设计主要实现数据采集、电池状态计算、均衡控制、热管理、各种通信以及故障诊断等功能。电池管理系统电路由电源模块、DSP芯片 TMS320LF2407A(简称为“LF2407”)、基于多个OZ890的数据采集模块、I2C通信模块、SCI 通信模块、CAN通信模块组成。OZ89采样模块将采集处理后的数据通过I2C总线发送到LF2407,由于LF2407自身不带I2C 接口,本设计利用PCA9564扩展其I2C接口。为了防止电磁干扰影响I2C总线上数据的传输,必须对总线信号进行隔离,考虑到I2C 总线是双向传输的,使用ADuM1250双向隔离芯片进行隔离。PCA9564及双向隔离电路如图所示。   PCA9564 是I2C 总线
[嵌入式]
基于DSP和OZ890的<font color='red'>电池管理</font>模块电路设计
如何重新定义电动汽车电池管理系统 (BMS)?
随着电气化动力系统变得日益复杂,BMS 需要执行的功能增多,承受的负担之重前所未有。   无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。未来,甚至车辆控制单元 (VCU) 的部件和功能也会与 BMS 相关联。    图1 配备所有相关部件的电动汽车电池管理系统 (BMS)   未来,BMS 将在电动汽车领域发挥重要作用。然而 BMS 的各个子功能往往由 OEM车厂 定制,会因系统配置不同而存在很大差异。因此,不可能制
[汽车电子]
如何重新定义电动汽车<font color='red'>电池管理</font>系统 (BMS)?
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved