基于开关电源的整流滤波中超级电容器的理论分析

最新更新时间:2014-11-29来源: 互联网关键字:开关电源  整流滤波 手机看文章 扫描二维码
随时随地手机看文章
本文将用于,并进行设计和具体实现,测试证明,可以用于电源输出端的,而且其滤波效果俱佳。其与电解电容器相比,具有其很大的优势。

滤波电容器在电路中起着重要作用,电容量越大滤波效果越好。特别是在低压整流(如5V、3.3V甚至更低的电压)输出时往往因为滤波电容器的电容量不够大而产生较大的纹波电压。通过测试表明,整流滤波电路输出1A电流时,分别采用1000、2200、3300、4700和10000微法的滤波电容器,纹波电压的峰峰值分别为:6V、2.8V、1.9V、1.1V和0.6V.如果采用更大的滤波电容器,滤波效果将会更好。问题是大容量电容器体积大。怎样解决这个问题呢?人们立刻想到能否将用于整流滤波,本文将通过理论分析和试验给予详尽的分析和试验结果。

整流滤波对于电容器的基本要求

中,输出整流滤波对于电容器而言有四点基本要求,它们分别是:有足够的电容量、符合要求的额定电压、符合要求的ESR(等效串联电阻)和可以承受相应的纹波电流值。只有同时满足这四点基本要求,超级电容器才可以用于的输出整流滤波。



图1 阻抗频率特性 图2 超级电容器作为整流滤波电容器 

超级电容器作为整流滤波电容器的可能性


对于超级电容器而言,它可以轻而易举的达到法拉级电容量,故超级电容器是有足够的电容量作为整流滤波。以前超级电容器的额定电压比较低,虽然可以通过多只串联的方式解决,但是多只串联后将导致ESR的增大,从而增加了ESR的问题。而超级电容器不能用于输出端的整流滤波的主要原因是:在的输出端整流滤波时,要求滤波电容器有尽可能低的ESR,而以前的超级电容器多只串联后的ESR很大,这使得超级电容器在用于输出整流滤波时会发热。例如:5个4.7F的超级电容器串联使用时,其ESR大约为300mΩ,这时,若在超级电容器上流过2A输出电流时,功率为1.2W,这个功率将导致超级电容器严重发热。不过现在的超级电容器已经达到了很高的水平,例如AVX公司生产了一系列bestcap?超级电容器,它同时具有高额定电压与低ESR的特点,如:一只90mF/12V的bestcap?超级电容器的ESR约为90mΩ,这与300mΩ相比小很多。可见,bestcap?超级电容器的ESR远低于以前的超级电容器,从而可以同时解决额定电压与ESR的问题;余下的问题就是能否通过相应的纹波电流是否符合要求。选择适合的电容量时(例如选择每安培负载电流1000~10000μF),铝电解电容器基本上不存在不能承受纹波电流,而且其ESR比较低,所产生的效应基本上对铝电解电容器几乎没有影响。bestcap?超级电容器的ESR与铝电解电容器的差不多,而且其具有非常的好阻抗频率特性,故bestcap?超级电容器可以承受相应的纹波电流值。图1为bestcap?超级电容器的阻抗频率特性图。由此可见,bestcap?超级电容器适用于输出整流滤波。

超级电容器用于整流滤波

现以90mF/12V的超级电容器为例,其相关参数为额定电压12V,额定电容量90mF、ESR90mΩ、体积48×30×6.1mm,温度范围-40℃~+70℃。

用超级电容器作为整流滤波电容器

与一般的整流滤波电路一样,超级电容器用于整流滤波的电路和输出电流、流过滤波电容器的电流波形如图2,只不过滤波电容器换成了超级电容器。以前,由于超级电容器的额定电压很低(仅2.7V),需要数只超级电容器串联。对于9V输出的稳压电源(考虑市电电压的变化,整流输出电压约为10~12V),但现在只采用一只90mF/12V bestcap,超级电容器就可以实现9V输出的稳压电源的滤波。

测试结果对比

通过对采用两只插脚式16V/33000μF的铝电解电容器并联作为滤波电容器的整流滤波电路。在整流输出电压平均值为9V,负载电流2.2A时的整流输出纹波电压如图3,所使用的示波器为F105B数字示波表,选择A通道,AC耦合,时基5mS/div(每格5mS),通道设置100mV/div(每格100mV)。从图中可以看到纹波电压的峰峰值(ΔY)为412mV,充电与放电(电压波形的上升与下降)时间基本相同。通过工频变压器降压后的整流电路,由于工频变压器的漏感作用(抑制电流变化),使滤波电容器几乎工作在或者是充电、或者是放电的状态,与市电直接整流的状态不同。

测试结果表明整流输出滤波电容器选择10000μF/A(每安培输出电流用1万微法)的滤波电容时,输出电压的纹波电压的峰峰值约为510mV,与理论分析结果的600mV/A很接近。因此,对于低压整流滤波电路,为了获得低纹波电压将不得不采用非常大的滤波电容器,不仅体积大而且价格很高。


图3 两只16V/3300 铝电解电容器并联的整流输出
现在采用一只AVX公司生产的90mF/12V bestcap?作为电容器,在与上面的例子相同的测试条件下,测得输出电压的纹波电压峰峰值为312mV,如图4所示。从纹波电压峰峰值可以看出一只90mF /12V bestcap?作为滤波电容器的纹波电压峰峰值比两只16V/33000μF的铝电解电容器并联作为滤波电容器的纹波电压峰峰值少100mV,即采用一只90mF /12V bestcap?作为滤波电容器比采用两只16V/33000μF的铝电解电容器并联作为滤波电容器的滤波效果好。

超级电容器作为的效果并不像理想电容器那样使输出电压接近一条直线,而是有一些波动,原因是超级电容器有相对一般电容器大的ESR.一只90mF/12V bestcap?超级电容器的ESR约为90mΩ,滤波电容器上的充、放电的电流差约为输出电流平均值的2倍,因而在输出端出现约310mV的由于ESR的电压波动,即使如此,还是可以得到很低的纹波电压。

由此可见,一只90mF/12V bestcap超级电容器的滤波效果相当于一只56000μF电解电容器。同时由上述的参数可知,超级电容器的体积比铝电解电容器的体积小很多,故在低压的应用中超级电容器将具有很大的性能优势、价格优势和体积优势。


图4 一只90mF/12V bestcap超级电容器的滤波效果

通过上述两个实验结果的对比可知,bestcap超级电容器可以用于电源输出端的整流滤波,而且其滤波效果俱佳。其与电解电容器相比,具有其很大的优势。同时bestcap?超级电容器具有额定电压高、ESR低、阻抗频率特性好的特点,在今后的研究中,可以通过实验进一步了解。
关键字:开关电源  整流滤波 编辑:探路者 引用地址:基于开关电源的整流滤波中超级电容器的理论分析

上一篇:开关电源变压器的常规分类有哪些?
下一篇:开关电源过流保护方式比较分析

推荐阅读最新更新时间:2023-10-12 22:49

基于UC3846的全桥开关电源的设计
本文所设计的全桥拓扑的控制电路主要包括控制器、保护电路、电流反馈、电压反馈、驱动电路和辅助电源等。控制电路是开关电源的核心部分,它设计好坏对于开关电源的性能至关重要,电源的很多指标如稳压恒流精度、紋波大小、输入输出特性都与控制电路息息相关,同时由于主电路是全桥拓扑,在对控制电路进行设计时要釆取相应措施防止直通现象发生。下面将对控制电路各部分功能电路进行具体的设计和介绍。 电流控制型芯片简介 采用UC3846作为控制芯片。该芯片采用大电流图腾柱式双端输出,输出峰值电流可达500mA,能直接驱动场效应管,内置精密带隙可调基准电压,高频振荡器,误差放大器,差动电流检测放大器,欠电压锁定电路以及开机软启动电路,具有自动关断功能。其
[电源管理]
用PWM直流控制器简化开关电源设计
尽  管 PWM 直流/直流开关电源转换器的结构很简单,但要用它做出实用的电源,还需要增加各种功能,如起动偏压、软起动、开关驱动、稳压、短路保护、过压保护、过热保护等。今天,一只小型直流/直流 PWM 控制器 IC 就可以实现上述的绝大多数功能。   但是,在电信和其它高电压应用(即,输入电压大于 15V)中经常存在直流/直流转换器的起动问题。控制器的运行需要一个偏置电压,以产生栅极驱动脉冲和其它所需信号。但在起动时,唯一可用的只有输入电压,如果输入电压大于 15V,一般情况下不能用作偏置和栅极驱动电压。因此,需要将输入电压降至 15V 以下,才能使电源起动。一旦电压正常运行,就可以用输出电压或者变压器、电感绕组中的电压,为 IC
[嵌入式]
应用于开关电源的绿色节能电源控制器
    SD486X系列芯片是由杭州士兰微电子推出的应用于开关电源的内置高压MOSFET、电流模式PWM+PFM控制器。该系列芯片具有低功耗、低启动电流和较低的EMI,最高效率可以达到84%以上,启动电压、输出电压和最大功率均可调节。目前芯片可以提供的功率范围为:宽电压范围5~18W,窄电压范围7~21W。可广泛应用于机顶盒、DVD播放机、电源适配器等整机产品中。     该系列芯片具有峰值电流补偿电路,可以为芯片提供最大功率平衡,该电路初始化后,可有效的减小芯片启动时变压器的应力。根据负载的实际情况,芯片的开关频率可在24~67KHz范围内进行调节,轻负载的降频模式和峰值电流控制功能可以为芯片提供更高的效率。此外,芯片的ADJ端具
[电源管理]
应用于<font color='red'>开关电源</font>的绿色节能电源控制器
开关电源技术的最新进展
随着对节能技术的呼声越来越高,随着电子设备小型化的要求,随着对环境保护的更高要求,开关电源技术也在飞速地发展着.更高效率,更小体积,更少电磁污染,更可靠地工作的开关电源几乎每个月都在推陈出新.本文旨在对近两年来开关电源突出的技术进步加以介绍,具体有以下几个方面: 1 同步整流技术 自从20 世纪90 年代末期同步整流技术诞生以后,它给开关电源效率的提升做出了重要贡 献.当前采用IC 控制技术的同步整流方案己经为研发工程师普遍接受.新上市的高中档开关电源几乎没有不采用同步整流技术的作品.现在的同步整流技术都在努力地实现ZVS及ZCS方式的同步整流.自从2002 年美国银河公司发表了ZVS 同步整流技术之后,现在已经得到了广泛应用.
[焦点新闻]
关于开关电源设计中的经典问答题
   如何为开关电源电路选择合适的元器件和参数?   很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCB layout问题,元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。   一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。   开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大
[电源管理]
开关电源升压电路设计大比拼,哪款合你口味?
开关电源升压电路设计一 下面的高手DIY的升压 电源 能上到15V/5A,大家试试所有的都还不错,就是发热量不是一般的大。 3843频率是172KHZ左右,MOSFET是IRF1010E,电感是11uH左右上边绕的是15uH,线径1.2mm环型铁芯 输出电流 :输入电流 X 转换效率(X%) X 乘以总工作周期 - 10~20%的余裕电流 以下用假设值来计算,10~20~%的余裕,先以10%来算。 输出电流 =输入电流(4A) X 转换效率(90%) X 乘以总工作周期(90%) - 10%的余裕 = 3.6A X 乘以总工作周期(90%) - 10%的余裕 = 3.24A - 10%的余裕 = 3.24A - 0
[电源管理]
<font color='red'>开关电源</font>升压电路设计大比拼,哪款合你口味?
开关电源的抗负载扰动能力
  用开关转换器的输出阻抗Zo(s)来表示它的抗负载扰动能力(Load RejectiON)。定义:   式(13-37)中的物理含义是:zo(s)越小,表示负载电流变化对开关转换器输出电压的影响越小,即开关转换器抗负载扰动能力越大。图1为计算开关转换器输出阻抗Zo(s)所用的等效电路,图中Z1(s)为开关转换器输人电压源Ui的输出阻抗,Z1(s)折算到电压比为M(Du)∶1的理想变压器二次侧得:Z1(s)/M2(Du)。   图1   求开关转换器输出阻抗zo(s)的等效电路   在忽略电感L和电容C的寄生电阻后,开关转换器的输出阻抗zo(s)可以由3个阻抗,即负载电阻R,容抗1/SC和并联阻抗[SLe+Z1(s
[电源管理]
<font color='red'>开关电源</font>的抗负载扰动能力
理论联系实际,由表及里剖析开关电源(二)
电源内部揭秘   当你第一次打开一台电源后(确保电源线没有和市电连接,否则会被电到),你可能会被里面那些奇奇怪怪的元器件搞得晕头转向,但是有两样东西你肯定认识:电源风扇和散热片。      但是您应该很容易就能分辨出电源内部哪些元器件属于一次侧,哪些属于二次侧。一般来讲,如果你看到一个(采用主动式PFC电路的电源)或者两个(无PFC电路的电源)很大的滤波电容的话,那一侧就是一次侧。   一般情况下,在电源的两个散热片之间都会安排3个变压器,比如说图7所示,主变压器是最大个的那颗;中等“体型”的那颗往往负责+5VSB输出,而最小的那颗一般用于PWM控制电路,主要用于隔离一次侧和二次侧部分(这也是为什么在上文图
[模拟电子]
理论联系实际,由表及里剖析<font color='red'>开关电源</font>(二)
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved