基于风力发电系统的电能变换装置研究

发布者:导航灯最新更新时间:2010-11-05 来源: 现代电子技术关键字:风力发电  控制策略  电能变换  仿真程序 手机看文章 扫描二维码
随时随地手机看文章

  O 引言

  伴随着经济的发展及人口的增长,人类对能源的需求增加,而以煤炭、石油为主的常规能源存在有限性,且污染和破坏自然环境。风能是一种清洁的可再生能源,并且资源丰富,有着无需开采、运输的特点。目前风力发电系统分非直驱风力发电系统和直驱风力发电系统,前者主要采用齿轮箱对风轮机提速后,驱动常规异步发电机,而直驱风力发电在整个体系结构中,由于省去了增速齿轮箱,减小了风力发电机的体积和重量,省去了维护,降低了风力发电机的运行噪声,所以研究直驱风力发电系统的电能变换装置对提高风电转换效率及开发风力发电技术的推广,有着重要的社会效益和经济效益。

  1 常规直驱风力发电系统的特性

  直驱风力发电系统采用低速的永磁同步发电机取代了异步发电机,在永磁直驱风力发电系统中,风轮机将捕获的风能以机械能的形式驱动永磁发电机,永磁发电机的转速随着风速的变化而进行变化,发出电压和频率都变化的电能,需要经过电能变换电路输出恒压恒频的电能。现阶段常规离网型户用风力发电系统的基本结构如图1所示。

常规离网型户用风力发电系统的基本结构

  风速的时变性,使得风力发电机的电压及频率变化,不易于直接被负载利用,所以目前的独立运行风力发电系统通过“交流-直流-交流”的转换方式供电,且要考虑风速很弱及无风的情况,系统的装置中使用了蓄电池进行储能。先用整流器将发电机的交流电变成直流电向蓄电池充电,再用逆变器将直流电变换成电压和频率稳定的交流电输出供给负载使用。系统的能量传输分配中要经过两次能量转换:电能-化学能-电能,能量的利用率偏低,且由于风力发电发出的能量较小,往往达不到负载需求的电能。

  2 改造后的直驱风力发电系统

  2.1 风力发电系统的基本组成

  针对直驱风力发电的特性,研究设计的风力发电系统应由风轮机、永磁同步发电机、电能变换装置(整流器、直流调压装置、逆变器)、控制器、泄能负载、蓄电池、制动刹车装置和用户负载等组成,其设计研究的永磁直驱风力发电系统的结构组成原理图如图2所示。

永磁直驱风力发电系统的结构组成原理图

  2.2 能量传输分配分析

  分析在正常情况下的能量流动路径,由图2所列出的风电系统的供电模式可知,在考虑风速大于切入风速及小于切出风速时,风力发电控制系统中的能量传输的关系大体上分4种情况如图3所示。

风力发电控制系统中的能量传输的关系

  正常启动风速到达后,风轮机开始运行,当风速较大时,风力发电机组发出的电能,经过电能变换装置调节后,得到用户负载所需要的交流电,多余的电能经过蓄电池储存起来;当风速不足时,风力发电机组发出的电能较小或则不发电能,此时由蓄电池发电给电能变换装置,进而变换后,供给用户负载;当风力发电机组发出的电能远大于用户所需的电能,且在蓄电池电量已被充满的情况下,采用泄能负载控制器对多余的电能放电。

  2.3 控制策略的分析设计

  在直驱风力发电系统中,风轮机对风能的捕获及其电能变换装置的控制策略在整个风电系统运行过程中决定风电转换的效率,根据风速的变化,负载的变化以及储能装置容量的变化,来研究风电系统的控制策略对风力发电系统的稳定运行以及最大化的利用风能有着重要的意义。由于离网型风力发电系统多用于农区、牧区等远离常规电网的场所,风力发电是主要的供电形式,根据这一地区用户负载的用电情况,在常规情况下可以设负载的电流阈值为Io,储能装置蓄电池SoC的阈值为Co,实测风速的阈值为Vo。当风力发电机运行在切入风速与切出风速之间时,设定风力发电体系中用户负载电流、蓄电池SoC及实测风速分别大于各自设定的阈值时,为1状态;小于设定阈值时为0状态,则可列出表1。

控制策略状态表

  在表中开关状态一行中数值位是“1”的,表示在图2中的Tx开关接通,为“0”的这一路表示开关断开,供电模式下的1~8种状态分别表示为:T2接通,风机供电;T1,T2接通,风力发电机供电,蓄电池充电;T2,T3接通,风力发电机供电,蓄电池放电;T2,T4接通,风机供电,泄能负载介入;T2,T3接通,风力发电机供电,蓄电池放电;T2接通,风机供电;T2,T3接通,风力发电机供电,蓄电池放电;T2接通,风机供电。

  在风力发电系统中,以风力发电机提供电能为主,蓄电池放电为辅,上述几种形式为风速达到风轮机运转的切入风速,且未超出切出风速,在稳定的工作风速内,并未提及无风以及风速过大,超出风力发电机承受的最大风速,那时将要启动机械刹车装置,将风轮机锁住,保护风力发电系统。

  3 风电体系下的电能变换电路控制系统设计

  3.1 控制系统方案的确定

  风力发电机发出的电能电压为三相交流电,且输出电压较低,需经过整流器进行整流,得到的直流电在经过控制器的作用下对蓄电池进行充电,设计中采用的是三相桥式不可控整流。而对于直流变换电路主要功能是:调节直流输出电压使之恒定,以达到后级逆变电路输入要求;提高逆变电路的功率因数并抑制高次谐波,完成功率因数的校正,所以可采用直流Boost升压斩波电路。选用全桥逆变电路,其特点为带负载能力强,电路容易达到大功率;又由于LC滤波器有着对输出波形中的高次谐波进行滤波处理的能力,因此选用了输出端带LC滤波器的单相全桥逆变电路的拓扑结构,以使逆变电路输出高质量的正弦波形。

  3.2 电能变换电路的控制器设计

  设计的永磁直驱风力发电系统发出电压在18~50 V之间变化时,经过电能变换电路的处理得到稳定的220 V电压,通过研究得出在设计整流及Boost升压变换电路的控制策略时,应该以控制输出电压为出发点,使输出电压保持恒定为目的,且同时要保证系统功率因数尽可能的接近于1,综合风电系统特殊环境及Boost变换的电路CCM工作特性的基础上,控制系统的设计中采用了平均电流控制技术,结构上为电流内环和电压外环构成双闭环结构;而对于逆变电路部分则在电路的控制方式上选用正弦脉宽调制方式对逆变电路进行控制,设计了采用PI调节器及PWM控制的电路控制策略。在确定了系统中电路的运行状态后,确定了电路参数,并利用Matlab\Sireulink搭建了电能变换电路逆变部分的仿真模型,如图4所示。

利用Matlab

  仿真结果如图5所示。在图5中从上至下分别为未经过滤波的负载电流波形、经过滤波后的负载电流电压波形,仿真结果可见在允许的范围内达到了负载要求的工作电压。

仿真结果

  4 结语

  针对永磁直驱风力发电体系下的电能变换电路进行了设计,并对所设计的控制策略及方案在Matlab软件下应用Simulink来完成的模型搭建和仿真调试。通过仿真,验证了设计的电能变换电路拓扑结构的正确性及控制策略的合理性,为直驱风力发电系统的电能变换的研究提供了一定的信息。

关键字:风力发电  控制策略  电能变换  仿真程序 引用地址:基于风力发电系统的电能变换装置研究

上一篇:Wifi与家庭插电联盟携手迎接智能电网
下一篇:智慧电表不是万灵丹,而且可能无法兑现某些承诺

推荐阅读最新更新时间:2024-03-30 21:32

英国石油公司位于南达科他州的25兆瓦风力发电厂安装了特斯拉电池
  英国石油公司(BP Plc)旗下子公司周二表示,所有特斯拉电池都已部署在英国石油公司(BP)位于南达科他的25MW泰坦1号风电场。   这座212kW/840kWh的储能设施将与Hand County的10个涡轮机的风力发电站整合在一起。该存储系统由特斯拉(NASDAQ:TSLA)设计、生产和安装,是英国油气巨头BP在美国的风能业务部署的首个储能系统。   英国石油全球替代能源业务首席执行官戴夫•桑亚尔(Dev Sanyal)表示:“这个项目将帮助我们围绕可再生能源、电池存储和其他形式的能源的整合,开发新的商业模式,它突显出我们致力于成为向低碳未来过渡的一部分。”根据声明,这也是西南电力集团(SPP
[新能源]
风力发电场输电线路工程质量管理与控制
引言 近两年,我国大力发展清洁能源建设项目,风力发电工程迎来了建设高峰,大量风电场被建设在海上、偏远的山区及丘陵地区,有效缓解了我国能源紧张的问题,提高了能源资源利用率。在风力发电场输电线路工程中,技术人员要严格管理与控制施工质量,从基础杆塔工程、铁塔工程、紧线与挂线、附件安装及接地设置等环节入手,全面提升基础工程的施工质量,提高输电线路的运行稳定性,促进我国能源电力系统的发展。 1基础工程质量控制策略 1.1基础杆塔工程质量控制 定位放线与复位分坑是基础杆塔工程中的重要环节。关于定位放线,技术人员要结合工程测量标准,将测量项目单与测量工具送到校验厂家进行校验,校验合格后方可使用。技术人员利用经纬仪定位放线,与设计单位与监理单
[嵌入式]
<font color='red'>风力发电</font>场输电线路工程质量管理与控制
单片机与PC之间串行通信实验 仿真程序
单片机与PC之间串行通信实验作业 包括DSN .C .HEX文件 源程序: #include reg51.h sbit button=P3^5; void init_tx() { TMOD=0x20; TH1=0xfd; TL1=0xfd; PCON=0x00; SCON=0x40; EA=1; ES=1; EX1=1; TI=0; EX1=1; IT1=0; TR1=1; } void main() { ini
[单片机]
单片机与PC之间串行通信实验 <font color='red'>仿真</font>及<font color='red'>程序</font>
利用风力发电机的高效充电电路
  1.输出200W风力发电机充电电路   这是面向风车直径Im.功率150W级的微型风力发电机充电电路,输入电压20V—80V.对12V铅蓄电池充电。电路采用下图所示的斩波型降压PWM开关方式,不需要变压器,只要电感,故电路简单。   具体电路如下图。    script src="/gg/article-main.js" /script script type=text/javascript /script script type=text/javascript src="http://pagead2.googlesyndication.com/pagead/show_ads.js" /scri
[电源管理]
利用<font color='red'>风力发电</font>机的高效充电电路
单相UPS逆变器的多环控制策略研究
1 引言     UPS主要由蓄电池、充放电电路、逆变电路和控制系统等几部分组成,其中逆变电路及其控制系统是UPS电源的核心部分。单相UPS逆变器的被控量是50 Hz的交流量,而PI调节器不能对交流量实现无静差调节,要减小稳态误差,必须提高比例增益,但过高的比例增益,会降低系统的稳定性,因此PI控制算法不适合控制交流量。根据内模原理,要实现无静差控制,控制环前向通道上必须含有外部输入量的动态模型。重复控制算法能根据被控对象,在控制环的前向通道上形成被控对象的内模,从而实现对交流量的无静差控制。采用重复控制策略控制单相正弦波逆变器能得到较满意的性能,但算法较复杂,实现也较困难。单相逆变器的多环控制策略与双环控制策略相比,逆变器输出电
[电源管理]
单相UPS逆变器的多环<font color='red'>控制策略</font>研究
Proteus超声波测距仿真电路图+单片机源程序
大多数人感觉超声波测距proteus仿真是无法实现的,虽然proteus自带的库有GUR03和SRF04两种模型,但是却与实际传感器使用方法相差甚远,即使求助度娘也很难找到简单易懂的教程。 之前很多人想做超声波测距仿真但都没有找到很好的办法去实现,在软件里没有这样的元件,有人用一个按键开关去模拟仿真,这样仿真出来的效果,非常不好。还有人用555时基电路产生一个延时信号(555电路作为超声波仿真的内部元件),来模拟超声波头发送后遇到回波返射回来的这阶段时间,来对单片机超声波测距单片机系统进行模拟,能完成对超声波测距模块大致仿真,但需要繁杂的设计。 下面是一个超声波测距模块的proteus模型,能直接用于proteus仿真,
[单片机]
Proteus超声波测距<font color='red'>仿真</font>电路图+单片机源<font color='red'>程序</font>
风力发电机对蓄电池的充电电路设计
  (1)用一个二极管的电路   最简单的电路是在风力发电机与蓄电池之间插入一个二极管,就可实现充电。下图a是基本原理电路,下图b是使用三相风力发电机的实际电路。当风速增大,风车转速升高使发电机输出电压高于蓄电池电压时,充电电流就流进蓄电池。用这种简单的充电电路,风速小时输出电压低,要能够充电需风速增大,但即使风速达到要求,由于发电机的输出电压被蓄电池电压钳位,发电机的负荷转矩变大,将风车转速抑制在一定值,因而不能工作在最佳负荷点,效率也不高。   (2)利用DC-DC变换器的控制电路   电路如下图,在风力发电机与蓄电池之间插入DC-DC交换器,可有效应对风速变化,使风力发电机工作在最高效率点。 (3)从
[电源管理]
<font color='red'>风力发电</font>机对蓄电池的充电电路设计
风力发电技术及其新型风机电控系统的应用
1  前言 风能是非常重要并储量巨大的能源,安全、清洁、充裕,能提供源源不绝而稳定的能源。“十五”期间,能源技术领域中所设立的后续能源技术是作为发展重点的。后续能源包括核能、可再生能源、氢能、燃料电池等,覆盖了除矿物能源以外的几乎所有能源领域,其中风能、太阳能为主攻方向。目前,利用风力发电已成为风能利用的主要形式,受到世界各国的高度重视,而且发展速度最快。风能产业作为一个新兴的有前景的高新技术产业。2020年我国风电总装机容量要达到3000万kW的目标,为风能产业的发展提供了很大的空间。据统计,架设5公里电线及以后的电费投资,远远大于太阳能风力发电系统的一次性投资,足以让您一劳永逸。 风力发电有三种运行方式:一是独立运
[电源管理]
<font color='red'>风力发电</font>技术及其新型风机电控系统的应用
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved