技术文章—关于 PCB 的阻抗控制

发布者:EEWorld资讯最新更新时间:2019-05-16 来源: EEWORLD关键字:PCB 手机看文章 扫描二维码
随时随地手机看文章

没有阻抗控制的话,将引发相当大的信号反射和信号失真,导致设计失败。常见的信号,如PCI总线、PCI-E总线、USB、以太网、DDR内存、LVDS信号等,均需要进行阻抗控制。阻抗控制最终需要通过PCB设计实现,对PCB板工艺也提出更高要求,经过与PCB厂的沟通,并结合EDA软件的使用,按照信号完整性要求去控制走线的阻抗。

 

不同的走线方式都是可以通过计算得到对应的阻抗值。

 

微带线(microstrip line)

 

它由一根带状导线与地平面构成,中间是电介质。如果电介质的介电常数、线的宽度、及其与地平面的距离是可控的,则它的特性阻抗也是可控的,其精确度将在±5%之内。

 

https://mmbiz.qpic.cn/mmbiz/ewiaKibzhXCHNrxDInWkNWHjWiaHAqvUBx0qADib7w84RzKibwJuCvZlHiaoWPbRa40RNcwJfibIBFxNia1eJYDqPYqCrw/640?

 

https://mmbiz.qpic.cn/mmbiz/ewiaKibzhXCHNrxDInWkNWHjWiaHAqvUBx0YQlKibH6BbibaD5QyyGiaCk70E1icL9BUdsI5uV9UE68icSPPKgWic44VOqA/640?

 

带状线(stripline)

 

带状线就是一条置于两层导电平面之间的电介质中间的铜带。如果线的厚度和宽度,介质的介电常数,以及两层接地平面的距离都是可控的,则线的特性阻抗也是可控的,且精度在10%之内。

 

https://mmbiz.qpic.cn/mmbiz/ewiaKibzhXCHNrxDInWkNWHjWiaHAqvUBx0vicZD22uoqhIuCicDqIq8pn0abvxEtS2YWH5cdOgkib6Ch2QZHZa5vQqA/640?

 

多层板的结构

 

为了很好地对PCB进行阻抗控制,首先要了解PCB的结构:

 

通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。

 

通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。

 

多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。

 

当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层

 

板叠层结构

 

  https://mmbiz.qpic.cn/mmbiz/ewiaKibzhXCHNrxDInWkNWHjWiaHAqvUBx0JMhsjk6J8BpFsycYaAcyTeLNSvfb1sOib1AdN6t0EHmn6xKVBH4PHuA/640?

 

PCB的参数

 

不同的印制板厂,PCB的参数会有细微的差异,通过与电路板厂技术支持的沟通,得到该厂的一些参数数据:

 

表层铜箔:可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um。

 

芯板:我们常用的板材是S1141A,标准的FR-4,两面包铜,可选用的规格可与厂家联系确定。

 

半固化片

 

规格(原始厚度)有7628(0.185mm),2116(0.105mm),1080(0.075mm),3313(0.095mm ),实际压制完成后的厚度通常会比原始值小10-15um左右。同一个浸润层最多可以使用3个半固化片,而且3个半固化片的厚度不能都相同,最少可以只用一个半固化片,但有的厂家要求必须至少使用两个。如果半固化片的厚度不够,可以把芯板两面的铜箔蚀刻掉,再在两面用半固化片粘连,这样可以实现较厚的浸润层。

 

阻焊层:铜箔上面的阻焊层厚度C2≈8-10um,表面无铜箔区域的阻焊层厚度C1根据表面铜厚的不同而不同,当表面铜厚为45um时C1≈13-15um,当表面铜厚为70um时C1≈17-18um。

 

导线横截面:我们会以为导线的横截面是一个矩形,但实际上却是一个梯形。以TOP层为例,当铜箔厚度为1OZ时,梯形的上底边比下底边短1MIL。比如线宽5MIL,那么其上底边约4MIL,下底边5MIL。上下底边的差异和铜厚有关,下表是不同情况下梯形上下底的关系。

 

https://mmbiz.qpic.cn/mmbiz/ewiaKibzhXCHNrxDInWkNWHjWiaHAqvUBx0xl5UGqbNjzcgVoGOtcEbJsugswe7MiaCsYMWzm5oggjxmw4cY4BWgFA/640?

 

介电常数:半固化片的介电常数与厚度有关,下表为不同型号的半固化片厚度和介电常数参数:

 

  https://mmbiz.qpic.cn/mmbiz/ewiaKibzhXCHNrxDInWkNWHjWiaHAqvUBx0vwBBajJR7ibickZ5H3iba4Sa5oeVicqymV0opUYn9JXNhAS8qaq1z0ehKA/640?

 

板材的介电常数与其所用的树脂材料有关,FR4板材其介电常数为4.2—4.7,并且随着频率的增加会减小。

 

介质损耗因数:电介质材料在交变电场作用下,由于发热而消耗的能量称之谓介质损耗,通常以介质损耗因数tanδ表示。S1141A的典型值为0.015。

 

能确保加工的最小线宽和线距:4mil/4mil。

 

阻抗计算的工具简介:

 

当我们了解了多层板的结构并掌握了所需要的参数后,就可以通过EDA软件来计算阻抗。可以使用Allegro来计算,但这里向大家推荐另一个工具Polar SI9000,这是一个很好的计算特征阻抗的工具,现在很多印制板厂都在用这个软件。

 

无论是差分线还是单端线,当计算内层信号的特征阻抗时,你会发现Polar SI9000的计算结果与Allegro仅存在着微小的差距,这跟一些细节上的处理有关,比如说导线横截面的形状。但如果是计算表层信号的特征阻抗,我建议你选择Coated模型,而不是Surface模型,因为这类模型考虑了阻焊层的存在,所以结果会更准确。下图是用Polar SI9000计算在考虑阻焊层的情况下表层差分线阻抗的部分截图:

 

  https://mmbiz.qpic.cn/mmbiz/ewiaKibzhXCHNrxDInWkNWHjWiaHAqvUBx05ezKNEV7calwAOj0dLicuYuJQmyiaHD7ok8Xc4qKq2Uga0N3YoG4mBSw/640?

 

由于阻焊层的厚度不易控制,所以也可以根据板厂的建议,使用一个近似的办法:在Surface模型计算的结果上减去一个特定的值,建议差分阻抗减去8欧姆,单端阻抗减去2欧姆。

 

差分对走线的PCB要求

 

(1)确定走线模式、参数及阻抗计算。差分对走线分外层微带线差分模式和内层带状线差分模式两种,通过合理设置参数,阻抗可利用相关阻抗计算软件(如POLAR-SI9000)计算也可利用阻抗计算公式计算。

 

(2)走平行等距线。确定走线线宽及间距,在走线时要严格按照计算出的线宽和间距,两线间距要一直保持不变,也就是要保持平行。平行的方式有两种: 一种为两条线走在同一线层(side-by-side),另一种为两条线走在上下相两层(over-under)。一般尽量避免使用后者即层间差分信号, 因为在PCB板的实际加工过程中,由于层叠之间的层压对准精度大大低于同层蚀刻精度,以及层压过程中的介质流失,不能保证差分线的间距等于层间介质厚度, 会造成层间差分对的差分阻抗变化。困此建议尽量使用同层内的差分。

 


关键字:PCB 引用地址:技术文章—关于 PCB 的阻抗控制

上一篇:全球半导体设备厂商15强出炉
下一篇:Microchip推出碳化硅产品,助力打造可靠的高压电子设备

推荐阅读最新更新时间:2024-11-12 09:31

AC-DC控制器PCB布局指南
在65W~150W 输出功率范围应用下,CrM PFC + QR Flyback 拓朴是非常普遍被选用的架构,在小型化集成线路趋势下,QR combo 控制芯片应运而生。 另外对于消费型电子产品,不仅能效需要符合法规的要求,其待机损耗也是相当重要的评判指标。 SO20封装不仅整合了PFC 与 QR 控制器的功能,也整合了高压启动与X2 cap 放电机制, 当然IC也必须考量到绝缘空脚距离以致于有些脚位的功能是复合性的,就像HV/X2, BO/X2, PCS/PZCD... 在这之中尤其是以小信号检测PCS/PZCD比较敏感,避免用户在应注意而未注意情况下进行不恰当的PCB布局设计,产生异常动作保护触发的现象,以下就为大家介绍NCP
[电源管理]
AC-DC控制器<font color='red'>PCB</font>布局指南
工程师详解非隔离式开关电源PCB布局设计技巧
一个良好的布局设计可优化效率,减缓热应力,并尽量减小走线与元件之间的噪声与作用。这一切都源于设计人员对 电源 中电流传导路径以及信号流的理解。 当一块原型电源板首次加电时,最好的情况是它不仅能工作,而且还安静、发热低。然而,这种情况并不多见。 开关电源 的一个常见问题是“不稳定”的开关波形。有些时候,波形抖动处于声波段,磁性元件会产生出音频噪声。如果问题出在印刷电路板的布局上,要找出原因可能会很困难。因此,开关电源设计初期的正确PCB布局就非常关键。 电源设计者要很好地理解技术细节,以及最终产品的功能需求。因此,从电路板设计项目一开始,电源设计者应就关键性电源布局,与PCB布局设计人员展开密切合作。 一个好的布局设计可优化电源效
[电源管理]
工程师详解非隔离式开关电源<font color='red'>PCB</font>布局设计技巧
印制电路板EMC设计技巧总结
  目前电子器材用于各类电子设备和系统仍然以印制电路板为主要装配方式。实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声。因此,在设计印制电路板的时候,注意采用正确的方法。   A、地线设计   在电子设备中,接地是控制干扰的重要方法。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。在地线设计中应注意以下几点:   1.正确选择单点接地与多点接地   在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影
[电源管理]
如何检测汽车电子设计中PCB的可靠性?
  可靠性在 汽车电子 中非常重要,而如今鉴于来自产品上市时间和成本缩减的压力,采取在软件虚拟样机环境中相对于测试室内的物理样机进行分析的方法显得愈发必要。目前因软件的存在,从而使电子和机械设计人员可进行更多的PCB模拟仿真方案。   汽车电子其实并非与其它复杂电子产品完全不同:多个中央处理器、网络、实时数据收集,以及极为复杂的PCB。汽车行业的设计压力与其它类型的电子产品相似:设计时间短,市场竞争激烈。那么汽车电子与例如一些高端娱乐产品电子之间有什么区别?天壤之别!如果PCB在娱乐产品中发生故障,人们的性命不受威胁;但要是在汽车中发生故障,人们的性命就岌岌可危了。因此,汽车电子部件的可靠性设计是设计过程中需要考虑的一个主要方面。
[嵌入式]
PCB的阻抗和损耗--数字工程师要掌握的射频知识连载(三)
PCB的阻抗和损耗对于高速信号的传输至关重要,涉及到前文所述的一系列因素。为了对这么复杂的传输通道进行分析,我们可以通过传输通道冲击响应来研究其对信号的影响。电路的冲击响应可以通过传输一个窄脉冲得到。理想的窄脉冲应该是宽度无限窄、非常高幅度的一个窄脉冲,当这个窄脉冲沿着传输线传输时,脉冲会被展宽,展宽后的形状和线路的响应有关。从数学上来说,我们可以把通道的冲击响应和输入信号卷积得到经通道传输以后信号的波形。冲击响应还可以通过通道的阶跃响应得到,由于阶跃响应的微分就是冲击响应,所以两者是等价的。 看起来我们好像找到了解决问题的方法,但是,在真实情况下,理想窄的脉冲或者无限陡的阶跃信号是不存在的,不仅难以产生而且精度不好控制,
[测试测量]
<font color='red'>PCB</font>的阻抗和损耗--数字工程师要掌握的射频知识连载(三)
技术文章:从焊接角度谈画PCB图时应注意的问题
影响PCB焊接质量的因素 从PCB设计到所有元件焊接完成为一个质量很高的电路板,需要PCB设计工程师乃至焊接工艺、焊接工人的水平等诸多环节都有着严格的把控。主要有以下因素:PCB图、电路板的质量、器件的质量、器件管脚的氧化程度、锡膏的质量、锡膏的印刷质量、贴片机的程序编制的精确程度、贴片机的贴装质量、回流焊炉的温度曲线的设定等等因素。 焊接厂本身无法逾越的环节就是PCB画图的环节。由于做电路设计的人往往不焊电路板从而无法获得直接的焊接经验,不知道影响焊接的各种因素;而焊接厂的工人不懂画板,他们只管完成生产任务,没有心思、更没有能力分析造成不良焊接的原因。由于这两方面的人才各司其职,难以有机结合。 画
[单片机]
技术文章:从焊接角度谈画<font color='red'>PCB</font>图时应注意的问题
Excelitas Technologies推出用于激光材料加工250mm镜
全球创新的定制化光电解决方案技术领导者埃赛力达科技有限公司(ExcelitasTechnologies®)近期推出焦距为 515nm-540nm 的 LINOS®远心 F-Theta-Ronar 250mm 镜头。新的 250mm 镜头是第一款含 FEM 模拟的标准 F-Theta 镜头,具有熔融石英制成的可互换镀膜防护玻璃,以及用于大远心扫描场的先进安装技术。 F-Theta-Ronar 250mm 镜头尤其适用于激光材料加工应用,例如 PCB 钻孔和有色金属加工焊接、切割和增材制造,具有高功率适用性及以下优势: 较大的有效焦距,可实现非常大的工作距离 0.5°的远心设计 熔融石英设计,入射光圈
[嵌入式]
Excelitas Technologies推出用于激光材料加工250mm镜
Altium 在PCB设计年会发布旗舰PCB设计工具重要更新
智能系统设计自动化、3D PCB 设计解决方案 (Altium Designer )、ECAD设计数据管理(Altium Vault )和嵌入式软件开发(TASKING )的全球领导者Altium有限公司在PCB设计年会PCB West期间发布了旗舰PCB设计工具Altium Designer 的重要更新。PCB West是在加利福尼亚州圣克拉拉举行的PCB年度设计大会。本年度PCB West大会的参与者在既定发布日期之前即可了解Altium Designer 16 的所有最新特性。通过全新的设计自动化和高效设计工具,此次更新将帮助工程师更快更准确地完成设计。 Altium公司美洲副总裁 Christopher Donato
[半导体设计/制造]
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved