干货 | 资深工程师总结10种复杂电路分析方法

发布者:BlossomSunrise最新更新时间:2021-06-10 来源: 网络关键字:电路 手机看文章 扫描二维码
随时随地手机看文章
电路问题计算的先决条件是正确识别电路,搞清楚各部分之间的连接关系。对较复杂的电路应先将原电路简化为等效电路,以便分析和计算。


识别电路的方法很多,现结合具体实例介绍十种方法。

特征识别法


串并联电路的特征是:串联电路中电流不分叉,各点电势逐次降低,并联电路中电流分叉,各支路两端分别是等电势,两端之间等电压。根据串并联电路的特征识别电路是简化电路的一种最基本的方法。


举例:试画出图 1 所示的等效电路。

图片

解:设电流由 A 端流入,在 a 点分叉,b 点汇合,由 B 端流出。支路 a—R1—b 和 a—R2—R3(R4)—b 各点电势逐次降低,两条支路的 a、b 两点之间电压相等,故知 R3 和 R4 并联后与 R2 串联,再与 R1 并联,等效电路如图 2 所示。

伸缩翻转法



在实验室接电路时常常可以这样操作,无阻导线可以延长或缩短,也可以翻过来转过去,或将一支路翻到别处,翻转时支路的两端保持不动;导线也可以从其所在节点上沿其它导线滑动,但不能越过元件。这样就提供了简化电路的一种方法,我们把这种方法称为伸缩翻转法。


举例:画出图 3 的等效电路。


解:先将连接 a、c 节点的导线缩短,并把连接 b、d 节点的导线伸长翻转到 R3—C—R4 支路外边去,如图 4。

再把连接 a、c节点的导线缩成一点,把连接 b、d 节点的导线也缩成一点,并把 R5 连到节点 d 的导线伸长线上(图 5)。由此可看出 R2、R3 与 R4 并联,再与 R1 和 R5 串联,接到电源上。

电流走向法



电流是分析电路的核心。从电源正极出发(无源电路可假设电流由一端流入另一端流出)顺着电流的走向,经各电阻绕外电路巡行一周至电源的负极,凡是电流无分叉地依次流过的电阻均为串联,凡是电流有分叉地分别流过的电阻均为并联。


举例:试画出图 6 所示的等效电路。


解:电流从电源正极流出过 A 点分为三路(AB 导线可缩为一点),经外电路巡行一周,由 D 点流入电源负极。第一路经 R1 直达 D 点,第二路经 R2 到达 C 点,第三路经 R3 也到达 C 点,显然 R2 和 R3 接联在 AC 两点之间为并联。二、三路电流同汇于 c 点经 R4 到达 D 点,可知 R2、R3 并联后与 R4 串联,再与 R1 并联,如图 7 所示。

等电势法


在较复杂的电路中往往能找到电势相等的点,把所有电势相等的点归结为一点,或画在一条线段上。当两等势点之间有非电源元件时,可将之去掉不考虑;当某条支路既无电源又无电流时,可取消这一支路。我们将这种简比电路的方法称为等电势法。


举例:如图 8 所示,已知 R1 = R2 = R3 = R4 = 2Ω ,求 A、B 两点间的总电阻。

图片

解:设想把 A、B 两点分别接到电源的正负极上进行分析,A、D 两点电势相等,B、C 两点电势也相等,分别画成两条线段。电阻 R1 接在 A、C 两点,也即接在 A、B 两点;R2 接在 C、D 两点,也即接在 B、A 两点;R3 接在 D、B 两点,也即接在 A、B 两点,R4 也接在 A、B 两点,可见四个电阻都接在 A、B 两点之间均为并联(图 9)。所以,PAB=3Ω。

支路节点法


节点就是电路中几条支路的汇合点。所谓支路节点法就是将各节点编号(约定:电源正极为第 1 节点,从电源正极到负极,按先后次序经过的节点分别为 1、2、3……),从第 1 节点开始的支路,向电源负极画。可能有多条支路(规定:不同支路不能重复通过同一电阻)能达到电源负极,画的原则是先画节点数少的支路,再画节点数多的支路。然后照此原则,画出第 2 节点开始的支路。余次类推,最后将剩余的电阻按其两端的位置补画出来。


举例:画出图 10 所示的等效电路。

图片

解:图 10 中有 1、2、3、4、5 五个节点,按照支路节点法原则,从电源正极(第 1 节点)出来,节点数少的支路有两条:R1、R2、R5 支路和 R1、R5、R4 支路。取其中一条 R1、R2、R5 支路,画出如图 11。

再由第 2 节点开始,有两条支路可达负极,一条是 R5、R4,节点数是 3,另一条是 R5、R3、R5,节点数是 4,且已有 R6 重复不可取。所以应再画出 R5、R4 支路,最后把剩余电阻 R3 画出,如图 12 所示。

几何变形法


几何变形法就是根据电路中的导线可以任意伸长、缩短、旋转或平移等特点,将给定的电路进行几何变形,进一步确定电路元件的连接关系,画出等效电路图


举例:画出图 13 的等效电路。


解:使 ac 支路的导线缩短,电路进行几何变形可得图 14,再使 ac 缩为一点,bd 也缩为一点,明显地看出 R1、R2 和 R5 三者为并联,再与 R4 串联(图 15)。

撤去电阻法



根据串并联电路特点知,在串联电路中,撤去任何一个电阻,其它电阻无电流通过,则这些电阻是串联连接;在并联电路中,撤去任何一个电阻,其它电阻仍有电流通过,则这些电阻是并联连接。


举例:仍以图 13 为例,设电流由 A 端流入,B 端流出,先撤去 R2,由图 16 可知 R1、R3 有电流通过。再撤去电阻 R1,由图 17 可知 R2、R3 仍有电流通过。同理撤去电阻 R3 时,R1、R2 也有电流通过由并联电路的特点可知,R1、R2 和 R3 并联,再与 R4 串联。

图片

独立支路法


让电流从电源正极流出,在不重复经过同一元件的原则下,看其中有几条路流回电源的负极,则有几条独立支路。未包含在独立支路内的剩余电阻按其两端的位置补上。应用这种方法时,选取独立支路要将导线包含进去。


举例:画出图 18 的等效电路。

图片

图片

方案一:选取 A—R2—R3—C—B 为一条独立支路,A—R1—R5—B 为另一条独立支路,剩余电阻 R4 接在 D、C 之间,如图 19 所示。

方案二:选取 A—R1—D—R4—C—B 为一条独立支路,再分别安排 R2、R3 和 R5,的位置,构成等效电路图 20。

方案三:选取 A—R2—R3—C—R4—D—R5—B 为一条独立支路,再把 R1 接到 AD 之间,导线接在 C、B 之间,如图 21 所示,结果仍无法直观判断电阻的串并联关系,所以选取独立支路时一定要将无阻导线包含进去。

节点跨接法


将已知电路中各节点编号,按电势由高到低的顺序依次用 1、2、3……数码标出来(接于电源正极的节点电势最高,接于电源负极的节点电势最低,等电势的节点用同一数码,并合并为一点)。然后按电势的高低将各节点重新排布,再将各元件跨接到相对应的两节点之间,即可画出等效电路。


举例:画出图 22 所示的等效电路。


解:节点编号如图 22 中所示。节点排列,将 1、23 节点依次间隔地排列在一条直线上,如图 23。元件归位,对照图 22,将 R1、R2、R3、R4 分别跨接在排列好的 1、2 的等效电路如图 24。

电表摘补法


若复杂的电路接有电表,在不计电流表 A 和电压表 V 的内阻影响时,由于电流表内阻为零,可摘去用一根无阻导线代替;由于电压表内阻极大,可摘去视为开路。用上述方法画出等效电 搞清连接关系后,再把电表补到电路对应的位置上。


举例:如图 25 的电路中,电表内阻的影响忽略不计,试画出它的等效电路。

图片

解:先将电流去,用一根导线代摘替,再摘去电压表视为开路,得图 26。然后根据图 25 把电流表和电压表补接到电路中的对应位置上,如图 27 所示。


关键字:电路 引用地址:干货 | 资深工程师总结10种复杂电路分析方法

上一篇:英特尔观点:永葆创新、赋能生态、长期主义
下一篇:掌握核心科技 OPPO给应届芯片人才开出40万年薪

推荐阅读最新更新时间:2024-11-11 10:37

集成电路项目投资总额超过2000亿元
2月3日,北京经济技术开发区(简称“北京亦庄”)举办项目集中签约活动,共129个重点项目通过现场签约、5G云签约的方式,签署了“入区协议”,总投资额近4000亿元,签约项目涉及汽车及智能装备、集成电路、信创园等9个领域。 据北京日报报道,集成电路相关项目投资总额超2000亿元。其中,单体投资76亿美元的中芯京城项目落地建设,施耐德公司设立研发中心。 据集微网此前报道,企查查显示,2020年12月7日,中芯京城集成电路制造(北京)有限公司(简称“中芯京城”)成立,股东包括:中芯国际控股有限公司、北京亦庄国际投资发展有限公司、国家集成电路产业投资基金二期股份有限公司。 2020年12月4日,中芯国际发布公告称,中芯控股、国家集成电
[手机便携]
采用CD4011的超温监测自动控制电路设计
   电路工作原理 :测温电阻RT接在控制门D1的输入端,它和电阻R1、R2及RP通过RP的分压调节,使门D1的输入电平为高电平,使D1输出为低电平。 使用时,热敏电阻RT安置于被控设备上,当被控设备温度超过最高设定温度时,由于RT阻值小,通过分压电路的分压,使D1输入端的电压变为低电平,经D1 反相为高电平,该高电平一方面加至多谐振荡器的控制端⑧,使多谐振荡器起振,通过放大管放大后,由扬声器发出警笛声,同时也加至VT1的基极使其导通,继电器吸和,通过继电器的常闭触点将被控设备的工作电源断开;另一方面经D2反相为低电平后,发光之时管LED构成通路,LED发光指示。二、元器件的选择 IC1选用CD4011;VD选用IN4001;VS
[电源管理]
采用CD4011的超温监测自动控制<font color='red'>电路</font>设计
分享一个触摸音量控制电路
该触摸音量控制电路具有两个触摸板,使用户只需触摸相关的触摸板即可增加或减少音频放大器的音量。 这种固态音量控制的优点是:由于没有任何磨损,使用寿命非常长,手指触摸控制快速简便,失真低。 电路的工作原理 该电路的工作方式类似于电子衰减器,配置为检测和响应备用触摸板上的手指触摸。FET T1 接线以模拟电阻器网络 T1、R1 上的可变电阻。 FET 可与以下任何等效器件互换:BF256B、BF256C、BF348、BFT10A、2N5397 T1两端形成的电阻由电容C1两端产生的负电压决定。 当用手指接触与负电源线相关的触摸板时,通过D2、R2和D3的电流为电容C1充电,延迟时间由C1、R2的值决定。 当C1上产生的负电荷
[嵌入式]
分享一个触摸音量控制<font color='red'>电路</font>
采用PIC16F676的VRLA蓄电池维护电路
  本铅酸蓄电池维护电路采用PIC16F676单片机作主控制器,电路如下图所示。通过本装置,利用普通充电电路平时对电池充电的同时。利用本装置检测电池电压充电阶段和时间,通过核心芯片单片机IC1内置程序计算,产生各阶段、各不同状态充电时的防电池硫化和减小硫化程度、以及对硫化电池的维护脉冲,以此保养和维护电池,延长电池使用寿命。   1.工作原理   (1)电源输入极性判别及转换电路电源输入极性判别及转换电路分两部分,一一是电源输入极性转换,指的是充电电路到维护电路的电源极性识别,还有就是维护电路到电池的电源极性识别;二是根据不同的充电器电源极性和电池输入极性,再自动识别进行匹配。充电端电源极性识别与极性转换电路由D6~D9组成,
[单片机]
采用PIC16F676的VRLA蓄电池维护<font color='red'>电路</font>
STM32f103的数电采集电路的ADC多通道采集程序
STM32拥有1~3个ADC(STM32F101/102 系列只有1个ADC),这些ADC可以独立使用,也可以使用双重模式(提高采样率)。STM32 的ADC是12位逐次逼近型的模拟数字转换器。它有18个通道,可测量16个外部和2个内部信号源。各通道的 A/D 转换可以单次、连续、扫描或间断模式执行。ADC的结果可以左对齐或右对齐方式存储在16位数据寄存器中。 ADC模数转换设置的一般步骤可以总结为如下几个步骤: 1.ADC时钟使能,GPIO 时钟使能 2.ADC复位 3.ADC端口模式设置 4.ADC参数初始化 5.开启中断并且初始化 NVIC(如果需要开启中断才需要这个步骤) 6.使能ADC 7.编写中断处理函数 前端采集模块
[单片机]
STM32f103的数电采集<font color='red'>电路</font>的ADC多通道采集程序
技术文章—电路中VCC、VDD、VEE、VSS都是啥意思
DCpower一般是指带实际电压的源,其他的都是标号(在有些仿真软件中默认的把标号和源相连的)VDD:电源电压(单极器件);电源电压(4000系列数字电路);漏极电压(场效应管)VCC:电源电压(双极器件);电源电压(74系列数字电路);声控载波(VoiceControlledCarrier)VSS:地或电源负极VEE:负电压供电;场效应管的源极(S)VPP:编程/擦除电压。 VCC:C=circuit表示电路的意思,即接入电路的电压; VDD:D=device表示器件的意思,即器件内部的工作电压; VSS:S=series表示公共连接的意思,通常指电路公共接地端电压。 从另一个角度理解: Vcc和Vdd是器
[电源管理]
运算放大器组成的简单锁相环电路
运算放大器组成的简单锁相环电路图
[模拟电子]
运算放大器组成的简单锁相环<font color='red'>电路</font>图
时域反射仪的硬件设计与实现----关键电路设计(五)
4.1时域反射测试 经过较长时间的硬件调试,以及软硬件电路的相互配合,时域反射仪基本实现了电缆测试的功能,下面将分不同情况对时域反射测量进行验证。 4.1.1无电缆下的测试 在进行电缆故障测量前一般需要对反射仪做粗略的设置,即选定一个脉冲信号,使其在屏幕上方可以看到分别从两个通道上输入的发射脉冲信号,以确保时域反射仪处于正常工作状态。图5-1给出了在没有接被测电缆情况下,在屏幕上显示的波形。     从图中可以看到,两个通道波形基本相同,都看不到有反射信号的产生,从两个角度可以分析该现象。 传输线理论分析:因为脉冲信号经过放大以后为8V,通过功率分配器分别送到两个输入端口,则经过均分以后,每个脉冲的
[电源管理]
时域反射仪的硬件设计与实现----关键<font color='red'>电路</font>设计(五)
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved