数字IC的高级封装盘点与梳理

发布者:EEWorld资讯最新更新时间:2021-08-13 来源: EEWORLD关键字:封装 手机看文章 扫描二维码
随时随地手机看文章

数字 IC 的封装选项(以及相关的流行词和首字母缩略词)继续成倍增加。微处理器、现场可编程门阵列 (FPGA) 和专用定制 IC (ASIC) 等高级数字 IC 以多种封装形式提供,例如:QFN——四方扁平无引线; FBGA——细间距球栅阵列; WLCSP——晶圆级封装; FOWLP——扇出晶圆级封装; fcCSP——倒装芯片级封装;和 FCBGA——倒装芯片球栅阵列封装。


image.png

先进半导体器件的封装类型和市场用途。 (表:格罗方德)


将多个芯片封装在一起的选项包括系统级封装、多芯片模块、芯片级、小芯片、异构、2.5D 和 3D 堆叠等。正在开发的多芯片量子处理器可以解决容错量子计算机的关键扩展挑战。共同封装光学器件 (CPO) 或封装光学器件 (IPO) 正在出现,它们将光学器件和开关硅集成在同一封装中,从而在曾经不相交和独立的技术之间产生协同作用,并节省大量功率。


image.png

多芯片封装技术的演进。 (图片:Cadence 设计系统)


小芯片、MCM 和 SiP


基于小芯片(Chiplet)的设计、多芯片模块 (MCM) 和系统级封装 (SiP) 是或可以是异构集成的形式,在定义这三种封装风格时存在非常大的灰色区域。一家公司的基于小芯片的设计可能被另一家供应商称为 MCM,而 MCM 和 SiP 通常被归为同一类别。下面回顾了一些细微差别。


小芯片是经过测试的 IP 功能的物理实现,具有在硅晶片上制造的标准通信接口,可通过提高制造产量和跨应用程序的可重用性来降低成本。给定解决方案中的小芯片可以具有不同的工艺节点。小芯片提供标准功能,使设计人员能够专注于设计中的独特 IP。结果被称为“伪 SoC”,其设计速度比完全集成的 SoC 解决方案更快、成本更低。基于小芯片的解决方案通常不包括无源设备或其他“非硅”设备。小芯片解决方案的一个例子可以是当今的一些微处理器,其中处理器内核和 I/O 驻留在通用封装中的不同硅芯片上。


MCM 最初仅集成多个芯片,不包括无源器件或其他组件。 MCM 中的芯片是“完整”的 IC,例如处理器、GPU 和 RF 部分,而不是更简单的单功能小芯片。随着概念的发展,MCM 的尺寸越来越大并集成了额外的组件,于是 SiP 诞生了。 MCM 和 SiP 之间的主要区别在于 MCM 不必是一个完整的系统。根据定义,SiP 是单个封装中的系统。


MCM 是封装中紧密耦合的子系统或模块。 SiP将多个 IC 以及支持的无源器件集成到单个封装中。与 MCM 一样,SiP 可以使用来自最佳单个工艺或工艺节点的硅来优化性能并实现所需的集成。SiP 被设计为一个完整的系统并用作单个组件。


image.png

系统级封装 (SiP),有时称为多芯片模块 (MCM),将多个 IC 和无源器件集成到单个封装中。 (图片:Octavo 系统)


2.5D 和 3D 封装


使用硅通孔 (TSV) 互连多个管芯通常被认为是 MCM 或 SiP 与 2.5D 封装器件之间的区别。 TSV 为 MCM 和 SiP 中的有机基板提供了高密度替代品。使用 TSV 可以获得 3D 封装的一些好处,而没有与全 3D 方法相关的挑战和成本。简而言之,与传统的 MCM 或 SiP 解决方案相比,将多个管芯放置在具有非常细间距 TSV 的中介层上会产生互连和更好的重量、尺寸和功率特性。


全3D IC则是更进一步,使用 TSV 在垂直维度上堆叠。它可以产生更小和更高性能的解决方案。 3D 封装是另一种形式的垂直集成,指的是使用引线键合和倒装芯片等互连方法进行 3D 集成。 3D 封装可分为 3D 系统级封装 (3D SiP)、3D 晶圆级封装 (3D WLP) 和 3D 层叠封装 (3D PoP)。与 2.5D 封装相比,各种形式的 3D 封装都有一些缺点,包括:


通过将芯片并排放置而不是垂直堆叠可以提高散热性能。


3D 结构本质上更复杂,修改或升级 2.5D 装配通常更简单、更快。升级 2.5D 器件就像使用新的中介层或用改进版本替换一个或多个芯片一样简单。


image.png

2D 封装在封装基板上的单个平面上安装 2 个或更多裸片,2.5D 在裸片和封装基板之间添加一个中介层,3D 堆叠则是在垂直维度进行集成。 (图片:美国宇航局)


晶圆级和芯片级


使用晶圆级封装 (WLP),晶圆制造工艺扩展到包括晶圆切割之前的器件互连。大多数其他封装首先进行晶圆切割,然后将单个管芯放入塑料封装中并连接焊料凸点。 WLP 在切割晶圆之前将封装的底部和顶部输出层以及焊料凸块连接到 IC。由于封装与裸片的尺寸基本相同,因此 WLP 是芯片级封装 (CSP) 技术的一种形式。


WLP 用于需要尽可能最小的解决方案的应用,例如智能手机。然而,WLP 的局限性在于,由于封装尺寸非常小,可以支持的触点数量有限。在高度复杂和紧凑的系统中,扇出晶圆级封装 (FO-WLP) 增强了标准 WLP 以克服有限的 I/O 功能。


与传统封装相比,FO-WLP 可实现更小的封装尺寸以及改进的散热和电气性能。尽管如此,FO-WLP 还是比 WLP 大,而且 FO-WLP 支持更多数量的触点,但不会增加芯片尺寸。在 FO-WLP 中,首先切割晶圆,然后将芯片精确地重新定位在载体晶圆上,每个芯片周围都有一个扇出区域。模具成型,然后添加焊球。


光学封装


高速数字网络(例如超大规模数据中心)中的序列化-反序列化 (SerDes) 功能通常涉及基于硅的通信链路和基于光的链路之间的接口。随着光学引擎和开关硅之间的距离减小,通道插入损耗也随之下降,从而节省了大量功率。最接近的间距是通过共同封装光学器件 (CPO) 实现的,其中接口的两侧都在一个封装中。


image.png

共同封装的光学器件具有最短的互连距离和最大的节能效果。 (图片:思科系统)


正在开发 CPO 的两项工作是车载光学联盟 (COBO) 和共同封装光学联合开发基金会 (CPO JDF)。COBO 已经创建了一个 CPO 工作组,专注于为 CPO 实施制定技术指南和标准。它由对在超大规模数据中心使用 CPO 感兴趣的最终用户和技术供应商组成。COBO 活动主要对 CPO 实施所需的远程激光源和光学连接感兴趣,预计它将与其他 CPO 标准化活动相辅相成。


Facebook 和微软成立了CPO JDF,其主要考虑与 CPO 相关的系统集成问题有关。 CPO JDF 发布了一份产品需求文档 (PRD),描述了旨在提高网络交换机密度和电源效率的 8x400G CPO 模块。 PRD 要求使用 XSR(极短距离)接口。 XSR 针对封装基板上的芯片到光学引擎 (D2OE) 接口和芯片到芯片 (D2D) 接口进行了优化,最大可达约 100 毫米 × 100 毫米。


image.png

基于XSR接口规范的3.2T CPO模块组装。 (图片:车载光学联盟)


16 个 XSR CPO 模块将用于构建低功耗 51.2Tb/s 交换机。 PRD 定义了 CPO 模块的两种变体,一种支持 400GBASE-FR4(8 个 Tx/Rx 光纤对),一种支持 400GBASE-DR4(总共 32 个 Tx/Rx 光纤对)。


多芯片量子处理器


扩展量子计算机具有挑战性。随着量子处理器尺寸的增加,制造良率下降。实现纠错量子计算需要大量的量子位(qubit)。正在努力将多个较小的芯片连接到一个大规模的量子处理器中。这种多芯片方法有望简化大型量子处理器的创建,并支持该技术的可预测和加速扩展。


缩放是开发容错量子计算机的关键。预计今年晚些时候将测试一个 80 量子位的系统。将多芯片模块技术应用于量子处理器可以产生足够大的系统来运行实际应用,包括所需的纠错。


image.png

多芯片量子处理器。 (图片:Rigetti Computing)


概括


数字 IC、光互连和量子处理器的封装选择越来越多。先进的封装技术支持异构集成以及使用来自最佳单个工艺或工艺节点的 IC 来优化性能并实现所需的集成。持续的封装开发对于实现从手机到超大规模数据中心的先进系统解决方案非常重要。

关键字:封装 引用地址:数字IC的高级封装盘点与梳理

上一篇:意法半导体制造首批200mm碳化硅晶圆
下一篇:芯和半导体联合新思科技业界首发EDA平台

推荐阅读最新更新时间:2024-11-11 15:26

色温可调LED的封装与性能
LED 以其优良的性能结合智能控制系统,被越来越多地应用于室内外 照明 场合,但同时也对其色温、显色指数等色度指标提出了新的要求。为了应对这种挑战,设计了一种新型的色温可调LED,利用大功率 LED芯片 结合金属基板封装出了色温可调的暖白光高显色指数LED样品,对其发光光谱、色温和显色指数随电流的变化进行了测试,发现LED的光谱有三个峰值,色温可从5000K变化到3300K,涵盖了冷色光到暖色光的范围,显色指数可从68增加到90以上,能够满足 室内照明 的要求。将这种色温可调的LED应用于筒灯,测试了其发光效果和散热性能,表明LED具有发光面均匀、无眩光,热阻小等特点,特别适合用于筒灯等室内照明场合。    1引言   自从蓝
[电源管理]
色温可调LED的<font color='red'>封装</font>与性能
直播预告 | 科普先进封装中的清洗工艺
电子制造和半导体封装精密清洗专家、工艺方案及咨询培训服务提供商ZESTRON宣布将于北京时间5月18日下午三点举行本年度第二场清洗技术在线公开课。本场讲座由拥有超过十年清洗技术工作经验的工艺工程师纪建光先生讲授 《先进封装中的清洗工艺》。 几十年来,半导体行业的发展基本上和摩尔定律契合,在半导体行业中用于指导长期规划和设定研发目标。只是近几年硅规模的指数级成本增长令摩尔定律在性能和经济效益方面的定义有所偏离。随着高性能,低功耗要求的不断增强,各种先进封装工艺层出不穷,然而它们都指向同一个趋势——封装密度越来越高,封装空间结构越来越紧凑,因此对可靠性的要求更加严苛。本场课程将讨论先进封装行业中清洗工艺对提升产品可靠性的意义。通过
[工业控制]
兆驰股份:拟投资20亿,新增了2000条LED封装产线
6月30日,兆驰股份发布公告称,公司控股子公司江西兆驰光元科技股份有限公司(以下简称“兆驰光元”)将在南昌生产基地新增 2000 条 LED 封装生产线及相应制程设备(最终以项目实际投入 LED 封装生产线的数量为准),进一步扩大封装规模。 资料显示,兆驰光元主要从事 LED 器件及其组件的研发、生产和销售,自成立以来扎根于LED 封装领域,产品广泛应用于通用照明、特殊照明、背光源、显示屏等,其中高端封装及背光产品已获得国内外一线品牌厂商的高度认可。 鉴于公司在南昌生产基地的 LED 封装扩产项目运行良好,南昌市青山湖区人民政府与兆驰光元达成《投资协议》,项目总投资 20 亿元,由兆驰光元在南昌生产基地新增 2000 条 LED
[手机便携]
[51单片机] EEPROM 24c02 [I2C代码封装-保存实现流水灯]
这里把EEPROM 24c02封装起来,今后可以直接调用,其连线方式为:SDA-P2.1;SCL-P2.0;WP-VCC _ :i2c.c 1 /*----------------------------------------------- 2 名称:IIC协议 3 内容:函数是采用软件延时的方法产生SCL脉冲,固对高晶振频率要作 一定的修改....(本例是1us机器 4 周期,即晶振频率要小于12MHZ) 5 ------------------------------------------------*/ 6 #include i2c.h 7 #define _Nop() _nop_() //定
[单片机]
MEMS追求标准化 加快封装技术规范进程
标准化是所有行业都会面临与需要的现实问题,不管哪一个产业即使在初期发展非常之好,但只要没有统一标准,最终都会受到制约,终会走向制定统一行业标准的道路。      无规矩不成方圆,这句话不管是放在日常生活中还是行业发展中,都需要众多的规则来规范我们的生活与生产。现在MEMS行业就在不断推动产业标准化进程。      MEMS技术是一门相当典型的多学科交叉渗透、综合性强、时尚前沿的研发领域,几乎涉及到所有自然及工程学科内容,以单晶硅Si、Si02、SiN、SOI等为主要材料。Si机械电气性能优良,其强度、硬度、杨式模量与Fe相当,密度类似A1,热传导率也与Mo和W不相上下。在制造复杂的器件结构时,现多采用的各种成熟的表面微bD工技
[工业控制]
推动新能源汽车技术升级的关键:加强研究汽车级IGBT及其封装技术
新能源汽车区别于传统汽车最核心的技术是三电系统:电池、电机和电控(见图 1)。 电机控制系统 是新能源汽车产业链的重要环节,电控系统的技术水平直接影响整车的性能和成本。其中, 电控系统应用的核心部件—— IGBT 拥有高输入阻抗、高速开关和导通损耗低等特点,在高压系统中担负着极其重要角色: 在主逆变器(Main Inverter)中,IGBT 将高压电池的直流电转换为驱动三相电机的交流电; 在车载充电机(OBC)中,IGBT 将 220 V 交流电转换为直流并为高压电池充电; 在 PTC、DC/DC、水泵、油泵、空调压缩机等应用中都会使用到 IGBT。 因此,加强对汽车级 IGBT 及其 封装技术 的研究是推动新能源
[汽车电子]
推动新能源汽车技术升级的关键:加强研究汽车级IGBT及其<font color='red'>封装</font>技术
高亮度矩阵式的LED封装技术与解决方案
近几年发光二极管(LED)的应用在不断增长,其市场覆盖范围很广,包括像指示灯、聚光灯和头灯这样的汽车照明应用,像显示背光和照相机闪光灯这样的照相功能,像LED显示器背光和投射系统这样的消费产品,像建筑物的特色照明和标志这样的建筑应,以及许多其他方面的应用。LED亮度高、发光效率高且反应速度快。由于耗能低,使用寿命长,放热少且可发出彩色光的特点,已经在很多方面替代了白炽灯。   随着LED效率的不断提高,产生的每瓦特流明量不断增大,利用LED进行通用照明变得越来越接近实际。比如在2003年,一个相当于3000流明的荧光灯管需要采用超过1300个效率为30流明/瓦的LED才能获得相当的效果。但到2005年,获得同样的荧光灯管发光效果所
[电源管理]
高亮度矩阵式的LED<font color='red'>封装</font>技术与解决方案
TI助力高速光模块市场,提供高集成度更小封装电源解决方案
TI解决方案助力高速光模块市场,提供高集成度,更小封装电源解决方案 (一)高速光模块的市场概况 近些年,高速光模块市场迎来快速增长。5G基建建设的持续推进和互联网时代数据市场的需求爆发持续刺激着对50G/100G/200G/400G高速光模块的需求。全球100G/200G/400G的光模块在未来3到5年预计会以30%的CAGR持续增长。 图1:高速光模块的市场出货量(Y16-Y22F) 5G基站建设架构从RRU+BBU进化到AAU+CU+DU推动出前传光模块,中传光模块及回传 光模块市场需求: 1.前传光模块主要使用在AAU到DU之间的光信号传输,集中在25G和50G的高速光模块。前传光模块的市场需求量相比于
[网络通信]
TI助力高速光模块市场,提供高集成度更小<font color='red'>封装</font>电源解决方案
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved