基于Virtuoso 平台的单片射频收发系统电路仿真与版图设计

最新更新时间:2007-07-06来源: 电子设计应用关键字:滤波  增益  噪声  基带 手机看文章 扫描二维码
随时随地手机看文章
引言

在当前通信市场的带动下,通信技术飞速向前发展,手持无线通信终端成为其中的热门应用之一。因此,单片集成的射频收发系统正受到越来越广泛的关注。典型的射频收发系统包括低噪声放大器(LNA)、混频器(Mixer)、滤波器、可变增益放大器,以及提供本振所需的频率综合器等单元模块,如图1 所示。对于工作在射频环境的电路系统,如2.4G 或5G 的WLAN 应用,系统中要包含射频前端的小信号噪声敏感电路、对基带低频大信号有高线性度要求的模块、发射端大电流的PA 模块、锁相环频率综合器中的数字块,以及非线性特性的VCO等各具特点的电路。众多的电路单元及其丰富的特点必然要求在这种系统的设计过程中有一个功能丰富且强大的设计平台。在综合比较后,本文选定了Cadence Virtuoso 全定制IC 设计工具。


               图1 典型的射频收发系统

Virtuoso 是Cadence 公司推出的用于模拟/数字混合电路仿真和射频电路仿真的专业软件。基于此平台,Cadence 公司还开发了面向射频设计的新技术,包括射频提取技术、针对无线芯片设计的两个新设计流程。不仅如此,目前的Virtuoso 已经整合了来自合作伙伴安捷伦、CoWare、Helic 和Mathworks 等公司的技术,射频设计能力大为增强。使用该项新技术,可以减少设计反复,并缩短产品上市时间。其AMS 工具可以实现自顶向下、数/模混合的电路设计;Composer 工具可以方便地进行电路设计的输入和管理;Spectre/SpectreRF 仿真器精度高,适合不同特点的电路设计;Layout工具包含了布局、交叉参考、布线、版图验证、参数提取等功能;此外,Virtuoso能进行可靠的后仿真和成品率控制。

基于Virtuoso 的行为仿真和系统规划

射频收发系统的设计最终能否成功,以及模块指标分配是否合理可行,都有赖于具体电路设计之前对系统的行为建模和计算,即所谓的行为仿真。这也是自顶向下设计模式的关键一步。Cadence 内置的Verilog-A 和VHDL仿真器,以及混合输入模式的仿真方法提供了这种可能性。而且,Cadence 软件免费提供了大量的行为模型供选择使用,对于射频系统设计,所要做的就是调用并设定各个模块预期的指标要求,通过仿真很快就能得到系统的行为特征。根据要求可以方便地修改各个模块的指标重新仿真,直到系统的行为满足要求为止。以接收机为例,接收系统如图2所示。每个模块的指标设定非常具体,如输入输出阻抗、增益、隔离度、噪声系数NF、线性度IP3、直流偏移IP2等。仿真完成后,每个模块的指标分配任务也同时完成。

           图2 基于Verilog-A 的接收系统行为仿真

每个模块用具体电路实现后可以逐一取代相应的设计模块,进行系统仿真,可以看出每个模块是否满足系统的需要,进而评估每个实际模块对系统性能的影响。

基于Virtuoso Spectre/SpectreRF 的电路模块

仿真设计

基于上述的行为仿真结果和指标分配结果,可以划分系统模块设计任务,对每个单元块分别进行设计仿真。

LNA

LNA 是射频接收机最前端的一个有源部件,它决定了系统的噪声性能。对它的要求主要是具有尽量低的NF 和足够的功率增益、好的输入匹配,其次是高线性度和隔离度。其电路如图3所示。利用Spectre 的SP 分析或SpectreRF 的PSS+Pnoise 分析都可以进行NF分析。还可以利用NFmin 的结果来挑选晶体管的尺寸,以使最优源阻抗满足最小的噪声要求。

               图3 LNA 电路原理图

Mixer

混频器是收发机的核心,由于完成的是变频工作,其主要仿真方法需采用SpectreRF 仿真器。混频器的增益、NF 等与输入输出有关,但输入和输出工作在不同的频段上,往往要在PSS 分析的基础上进行其它分析才能得到正确结果,如PSP、Pnoise、PAC 等。混频器的结构是典型双平衡吉尔伯特。

VGA

基带VGA 由于频率低、增益大,因此对噪声要求不高,主要是对线性度、增益等指标有较高的要求,SpectreRF 的PSS 扫描可以方便地对模块的输入进行扫描并自动对扫描曲线作延长,直接标示出线性度P1dB 和IIP3 的交点位置及数值大小,非常方便直观。这种方法与传统的two tone 测试相比更加灵活高效。VGA 在不同增益状态下的IIP3 指标的仿真只需把控制写成变量,在ADE 环境中进行扫描变量的值即可完成。所得的结果可以方便地进行比较分析。通过调整可以获得理想的VGA 电路。甚至可以把ADE下的各种设置保存成ocean 的脚本文件,利用脚本的自动运行,只要事先安排好各种仿真任务,Cadence就能自动完成各项仿真并保存数据结果。对数据进行比较分析后能获悉电路的性能,以此为指导逐步改进,便可获得一个满足系统需要的电路模块。

PLL 模块

PLL 各模块的仿真是一个比较有挑战性的任务,PLL 本身是一个数字/模拟混合的模块,但是一般都用模拟的方式设计各个模块。PLL 的仿真包含了上百项指标的测试工作,这些仿真要用到几乎所有Spectre 和SpectreRF 的仿真工具。以其中VCO 和CP 的仿真为例,VCO非线性的工作特点决定了它的噪声计算不能以小信号的方式进行,采用PSS+Pnoise的方式则可以准确地仿真VCO 的相位噪声性能。通过扫描可以得到VCO 的频率调谐增益Kvco。

电荷泵输出电流特性是衡量CP 性能的常用曲线,CP 决定了PLL 环路的增益和带内噪声性能。通过扫描也可以容易地得到CP 在不同状态下电流源的恒流和匹配特性。

以上所述是射频接收机几个典型单元模块的电路设计仿真过程。系统各个单元块的仿真是可以同时展开的,完成的模块可以随时代入行为系统来验证设计结果。经过若干次反复修改与验证,最终可以得到符合要求的接收系统。

温度分析

要保证最终系统设计的可靠性和成品率,很关键的一步是在各个单元块的设计中进行温度、极端情况等分析。这些功能可以在Cadence Virtuoso中通过设置不同的仿真温度、通过仿真模型的Corner 设置,以及直接使用其提供的MonteCarlo 仿真工具来进行。

          图4 系统电路图 图5 系统的电路测试设置

射频收发系统的整体电路仿真

各个模块电路分别设计验证完成以后,就可以把所有模块连成系统,并加上PAD、ESD 等构成一个完整的芯片系统,如图4所示。对这个系统加上激励进行仿真测试,如图5所示,可以对整个系统电路进行仿真。如果仿真计算所用的硬件资源足够大,可以直接对系统进行tran、SP、PSS,以及PSP、Pnoise、PAC 等分析,获得整个芯片的性能。如果资源不足,则可以考虑对系统按功能进行分组、分块仿真。由于分出的块之间相对独立,因此整体系统的特性与分块仿真差别不大。

版图设计与后仿真

在各模块的设计指标满足自身及系统要求的基础上可以开始各个模块的版图设计,如图6所示。首先利用Layout-XL 的元件调入功能可以直接由原理图调入版图元件,进行各个模块的粗略布局,主要是安排与其它模块的连接端口以及一些重要元件的预布局。然后从系统上将所有模块的预布局调入进行整体布局考虑。利用Virtuoso Layout 工具所具有的层次化管理和操作的特性,可以对每个模块的安放及其与其它模块的衔接进行系统考虑。


            图6 单片射频收发芯片版图设计

系统布局以后,将边界条件分配给每个模块。在模块单独的布局过程中要遵守其边界约定。版图进行到一定阶段后,即可以调入到系统版图中来检查,随时作必要的调整以满足每个模块的具体情况。

具体版图绘制过程中可以充分利用Virtuoso 版图工具的强大功能,比如充分发挥快捷键功能可以使版图设计流畅高效;利用Layout-XL 的交叉参考可以随时发现错误的连线或因疏忽造成的短路;利用DRD 的实时规则检查可以避免绝大多数违反设计规则的布图。
版图的规则检查可以采用Virtuoso 的Diva 工具, DRC、LVS、Extract 等工作都可以在其友好的界面下完成。对于射频电路版图元件数规模不大的特点,利用Diva 完成绝大部分工作是很合适的。如果想进一步提高版图提取和后仿真的精确度,可以考虑采用Assura 工具来进行。

结语

本文详细讨论了基于Cadence Virtuoso 设计平台的单片射频收发集成电路的设计过程。讨论了利用Virtuoso 工具完成的自顶向下、从系统到模块、从前端都后端的整个设计步骤,直到实现一个完整的射频芯片。可以看出,Virtuoso 平台工具在IC 设计的各个阶段所发挥的重要作用。

文中所述的单片射频芯片设计中所采用的Virtuoso工具只是Virtuoso 家族中最常用的几个工具,依靠他们的强大功能足以完成复杂的射频系统设计,是性价比较高的一种解决方案。如果再结合Virtuoso 的AMS、UltraSim、VoltageStorm、ElectronStorm等工具,将会使设计效率更高,设计更精确。

参考文献

1. R. Telichevesky, K. Kundert, and J. White.Receiver characterization using periodic small-signal analysis.1996
2. J. McDonald, R. Maini, L. Spangler, and H. Weed.Response surface methodology: a modeling tool for integrated circuit designers. Solid-State Circuits, IEEE Journal of, vol. 24, pp. 469-473, 1989
3. H. Samueli.Broadband communications ICs: enabling high-bandwidth connectivity in the home and office.presented at Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International, 1999
4. R. G. Meyer and W. D. Mack.A DC to 1-GHz differential monolithic variable-gain Amplifier. Solid-State Circuits, IEEE Journal of, vol. 26, pp. 1673-1680, 1991
5. H. Darabi, J. Chiu, S. Khorram, K. Hea Joung, Z. Zhimin, M. Hung, Chien, B. Ibrahim, E. Geronaga, L. H. Tran, and A. Rofougaran.A dual-mode 802.11b/bluetooth radio in 0.35-/spl mu/m CMOS. Solid-State Circuits, IEEE Journal of, vol. 40, pp. 698-706, 2005

关键字:滤波  增益  噪声  基带 编辑: 引用地址:基于Virtuoso 平台的单片射频收发系统电路仿真与版图设计

上一篇:EDA技术在微机接口技术实验教学中的应用
下一篇:基于Virtuoso 平台的单片射频收发系统电路仿真与版图设计

推荐阅读最新更新时间:2023-10-12 23:12

数字电路中△I噪声的危害
随着 数字电路 向高集成度、高性能、高速度、低工作电压、低功耗等方向发展,数字电路中的△I噪声的特性和抑制△I噪声的技术成为一个亟待系统、深入研究的领域。   △I噪声的产生过程及其基本特点表明 :△I噪声是由数字电路的电路结构和工作过程决定的,恰当的电路设计只能在一定程度上减小(而不可能消除)△I噪声。△I噪声是数字电路固有的。数字电路中不同单元产生的△I噪声会发生叠加,电路的规模越大,叠加出现的可能性越大,造成的电流尖峰脉冲越强;△I噪声是宽带噪声源,频谱宽度主要由电路的速度决定,速度越高,频谱范围越宽;△I噪声同时产生传导骚扰和辐射骚扰,电路的速度越高,辐射发射越强。   本文在△I噪声的产生过程及其基本特
[模拟电子]
数字电路中△I<font color='red'>噪声</font>的危害
噪声敏感中使用PWM伺服放大器
设计师在噪声敏感应用中使用 PWM 放大器时要特别小心。噪声敏感应用包括那些采用高分辨率编码器、超声换能器,或其它低电平、中频信号发生器。接地、屏蔽和其它电路设计技巧可以缓解大部分噪声问题。而对噪声最敏感的应用可能需要进一步的降噪方法,如 PWM边沿滤波器。简单的设计指导可以确保对电容性耦合电流的有效管理,帮助你获得 PWM 伺服放大器的全部好处。   PWM 方案   PWM 用一种数字兼容的双电平脉冲串对模拟信号作编码。PWM 有各类变型,但伺服放大器最常用的是恒定载波频率型。用于伺服放大器的典型 PWM 载波频率为 10 kHz ~ 20 kHz。用脉冲宽度的变化对PWM脉冲串中的模拟信号信息进行编码。对于固定
[模拟电子]
<font color='red'>噪声</font>敏感中使用PWM伺服放大器
用于高阻抗电路的低失真、低噪声放大器
用于高阻抗电路的低失真、低噪声放大器 电路的功能 近年来,噪声及失真特性得到改进的低噪声放大器品种繁多,已无须用分立元件制作了。此外,也有为了使噪声减到最小而降低源极电阻,同时输入端的偏流IR又比通用OP放大器还大的OP放大器(如NE5534等)。但是,有时很难在高输入阻抗电路中使用这些放大器。 本文提供的电路是在低失真、低噪声OP放大NE5534A的基础上加分立元件、并把输入偏置电路作成FET差动电路,使失真和噪声均降到很小。另外,输出电路电路为推挽式,可以使驱动更低的负载电阻。 电路工作原理 在输入级使用了双FET,以求减少偏流,实现高输入电阻,以满足信号源的要求,同时为了用密勒效应减少高
[模拟电子]
用于高阻抗电路的低失真、低<font color='red'>噪声</font>放大器
工程师对模拟滤波设计的思考
在谈滤波器设计的时候我们在目前所知的范围内需了解两个问题:   其一是这模拟滤波其本质特征到底是什么;   其二是我要设计的系统是数字滤波还是模拟滤波。   对数字滤波还是模拟滤波其本质区别理解这里用我的观点给自己定义的是模拟滤波对于干扰信号相当于御敌于国门之外,而数字滤波相当于先开门把狼放近来之后再关门打狼。二者在战略上是一致的,都是把干扰信号干掉;战术上区别则很大,以至于很多时候因为这个问题把搞数字滤波的和搞模拟滤波设计的对立起来,结果每一方面都说自己的好,尤其是今天单片机的运算速度快了,DSP的价格降了,FPGA越来越普及了,使得更多的数字系统工程师再理解滤波器设计的时候更多倾向于用数字滤波器,而且更多人宁
[模拟电子]
ECL电源开关在数字光发射机调制电路中的应用研究
在光纤通信系统中,信息由LED或LD发出的光波所携带,光波就是载波。把信息加载到光波上的过程就是调制。光调制方式按调制信号的形式可分为模拟信号调制和数字信号调制。目前,数字调制是光纤通信的主要调制方式,也就是通常的PCM编码调制,以二进制数字信号“1”或“0”对光载波进行通断调制,并进行脉冲编码(PCM)。数字调制的优点是抗干扰能力强,中断时噪声及色散的影响不积累,因此可实现大容量、长距离传输。 1 光发射机 简单地讲,光传输系统中一个基本的光发射机主要包括光发射器件及其驱动电路。光发射器件有发光二级管(LED)、激光二级管(LD)或激光调制器(LM);驱动电路为系统光源提供合适的“开”、“关”电流。    1.
[应用]
语音信号的数字化噪声抑制技术
  语音信号的噪声抑制技术是基于人耳的声音屏蔽效应的,即当有较强的声音信号时,较小的噪声信号将被屏蔽而不易被听到。    在具有噪声抑制功能的语音通信设备中,没有语音信号时噪声抑制电路将信道关闭,使噪声信号不能到达语音终端,避免了噪声出现;语音信号来到时,噪声抑制电路自动打开信道,这时虽然噪声语音一起送到语音终端,但由于声音屏蔽效应,噪声的存在可以忽略。 模式式的噪声抑制电路直接对语音模拟信号进行处理,通常主要由取样放大器、模拟比较器、模拟开关、阻容延时器件等组成。因其集成度低、参数调整困难、设定的噪声抑制参数易受环境因素影响而漂移,使得噪声抑制性能难以得到保证。    在为某国孙工程研制新一代语音指挥通信设备时,为
[模拟电子]
基于DSP Builder的16阶FIR滤波器实现
0 引 言 FIR数字滤波器在数字信号处理的各种应用中发挥着十分重要的作用,它能够提供理想的线性相位响应,在整个频带上获得常数群时延,从而得到零失真输出信号,同时它可以采用十分简单的算法予以实现。这些优点使FIR滤波器成为设计工程师的首选。在采用VHDL或VerilogHDL等硬件描述语言设计数字滤波器时。由于程序的编写往往不能达到良好优化而使滤波器性能表现一般,而采用调试好的IP Core需要向Al-tera公司购买。在此,采用一种基于DSP Builder的FPGA设计方法,使FIR滤波器设计较为简单易行,并能满足设计要求。 1 FIR滤波器介绍 1.1 FIR滤波器原理 对于一个FI
[嵌入式]
基于DSP Builder的16阶FIR<font color='red'>滤波</font>器实现
中频发电机对检测装置的干扰剖析及EMI滤波实现
   0 引言   随着电子信息技术的飞速发展及各类电气、电子、信息设备的日益广泛应用,电磁干扰(EMI)的交互作用使得电子设备中存在着越来越复杂的电磁环境,对各种仪器设备产生越来越大的危害。电子设备受电磁噪声干扰的作用会产生多种危害,在模拟电路中可以引起信号波形的畸变,信噪比降低,甚至信号会完全被EMI所淹没。噪声干扰也会使得数字电路系统中的误码率上升,逻辑电平紊乱,降低系统信息的可靠性,极端情况下导致失控或误操作的严重后果。尤其在一些特殊领域,与一般的电子信息系统相比,电子设备具有密集度高、电磁兼容环境恶劣和可靠性要求高等特点,使得电磁兼容(EMC)技术在该领域的应用具有特殊重要的意义。目前中频发发电机已广泛应用于舰船、
[模拟电子]
小广播
最新半导体设计/制造文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved